
The Productivity Consequences of
Pollution-Induced Migration in China

Gaurav Khanna*

Wenquan Liang†

Ahmed Mushfiq Mobarak‡

Ran Song §

June, 2023

Abstract

We quantify how pollution affects aggregate productivity and welfare in spatial equi-
librium. We document a robust pattern in which skilled workers in China emigrate
away from polluted cities, more than the unskilled. These patterns are evident under
various empirical specifications, such as when instrumenting for pollution using dis-
tant upwind power-plants, or thermal inversions that trap pollutants. Pollution changes
the spatial distribution of skilled and unskilled workers, which increases returns-to-
skill in cities that the educated emigrate from. We quantify the loss in aggregate pro-
ductivity due to this re-sorting by estimating a spatial equilibrium model. Counterfac-
tual simulations show that reducing pollution increases productivity through spatial
re-sorting by approximately as much as the direct health benefits of clean air. We
identify a new channel through which pollution lowers aggregate productivity sig-
nificantly. Hukou mobility restrictions exacerbate welfare losses. Skilled workers’
aversion to pollution explains a substantial portion of the wage-gap between cities.
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1 Introduction
The large productivity gaps across regions within countries create an enduring develop-

ment puzzle: Why do workers remain in low productivity areas when they could experience
wage gains elsewhere (Gollin et al., 2014)? We focus on air pollution, which can have a
large effect on where people choose to live and work. Particulate matter pollution exceeded
WHO air quality guidelines for 96% of Chinese cities in 2015, and was on average four
times higher than safe levels, adversely affecting life expectancy, heart disease, stroke, and
lung cancer (Ebenstein et al., 2015, 2017; He et al., 2020). This recent sharp increases
in pollution was concentrated in a few Chinese cities, altering incentives for workers to
relocate between locations.

We quantify the aggregate productivity consequences of this movement within a spatial
general equilibrium framework that allows for rich policy counterfactuals. Policies that
permit spatial reallocation could potentially produce productivity gains (Clemens et al.,
2019; Heise and Porzio, 2021). We show that the emigration of workers from polluted, but
potentially highly-productive cities, creates losses in aggregate productivity. Additionally,
when skilled workers choose to leave polluted places where they would be more produc-
tive, the production complementarities between skilled and unskilled workers makes the
unskilled less productive. Migration costs, both physical and from Chinese hukou policy,
differentially restrict mobility by skill, and exacerbates the productivity and welfare losses
from pollution.

We identify the migration response to exogenous variation in pollution. We go beyond
the existing reduced-form literature by assembling several new datasets and investigating
this relationship under multiple independent sources of variation, to robustly establish that
skilled people indeed emigrate away from polluted areas. We isolate exogenous fluctua-
tions in pollution leveraging variation in wind direction combined with the historical place-
ment of distant thermal power plants (as in Freeman et al., 2019), and a meteorological
phenomenon called thermal inversions that traps pollution (as in Arceo et al., 2016; Chen
et al., 2022; Hicks et al., 2015). We find robust evidence that workers leave areas with high
levels of pollution, and college-educated workers are more responsive.

Yet, the reduced form analysis by itself is incomplete due to equilibrium effects: all
parts of the country are affected either directly or indirectly by the relocation of work-
ers, making finding true ‘control groups’ for comparison elusive. Pollution and the skill-
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composition of the workforce are jointly determined, and both depend on other factors
such as industrial growth (Bassi et al., 2021). Residents of cities experiencing no change in
pollution will still see changes in migration incentives, as immigration from other newly-
polluted places change equilibrium wages across cities. As the quantities of workers,
wages, and pollution levels are jointly determined in spatial equilibrium, it is difficult to
interpret key parameters solely from reduced-form relationships. Our model interprets the
estimated parameters and allows us to study policies.

We quantify the productivity implications using our model. The differential emigration
of skilled workers changes wages by skill-group across cities, which in turn also affects
the location choices of the unskilled in general equilibrium (Eeckhout et al., 2014). We
empirically document in our data that the relative scarcity of the skilled in polluted cities
raises the marginal product of skill in those locations (Giles et al., 2019). Cleaning up
polluted cities therefore induces a relocation of skilled workers from low to high marginal
product areas, which raises aggregate output (Hsieh and Moretti, 2018).

The differential response to (exogenous variation in) pollution shifts the labor supply
of different types of workers, and produces a valid estimate of the compensating wage-
differential for pollution. This traces out the labor demand curve, and allows us to es-
timate the elasticity of substitution between skills, showing a fair degree of production-
complementarity. To trace out the labor supply curve, we create instruments based on
trade-induced growth from the permanent normalization of trading relations (NTR) be-
tween the US and China which differentially generate variation in the demand for skilled
and unskilled workers across Chinese cities.1

For a more comprehensive and accurate quantification, our model incorporates alterna-
tive mechanisms linking production, pollution and productivity: (a) pollution can directly
affect health and productivity (He et al., 2016; Zivin and Neidell, 2012); (b) production, in
turn, affects air quality; and (c) worker location decisions may affect agglomeration (Au
and Henderson, 2006), (d) house prices (Glaeser, 2014a), or (e) the pollution-intensity of
production (Glaeser and Kahn, 2010; He et al., 2020). We introduce additional instruments

1Pierce and Schott (2016) use the NTR shock and Autor et al. (2013) use the WID shock to document
effects on the US. Our approach takes advantage of the fact that these are simultaneously export shocks that
had differential effects on skilled and unskilled labor demand in Chinese cities that were more or less exposed
to trade. With unique city-level data on the production of each product for which we have tariff information,
we are able to construct an instrument for export-induced growth across Chinese cities.
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to estimate these elasticities.2 As workers move, it may change where production takes
place (Imbert et al., 2022) and the sectoral composition of production (Duranton and Puga,
2005), affecting pollution levels, agglomeration and house prices. In summary, we quantify
the productivity effects of pollution via worker re-sorting, accounting for other important
mechanisms through which production, pollution, and migration are related.

The model allows us to quantify how much of the wage gap across cities is attributable
to pollution differences. Our estimates imply that equalizing pollution between high-
pollution Tianjin and low-pollution Chongqing would bridge the between-city skilled wage
gap by 14%. Companies in China reportedly offer up to 20% wage premiums to induce
workers to relocate to polluted productive cities (AFP News, 2019), so our estimates are in
line with the real-world behavior of firms and workers.

The fact that pollution explains a meaningful portion of the productivity gaps across
cities sheds light on the puzzle we raised at the outset. The news media has documented
how concerns about pollution keep workers away from cities where they could be more
productive,3 but such productivity losses have not been quantified. This phenomenon is
also not limited to China: when Delhi residents were asked about their plans to deal with
pollution, the single-most common response was “relocate” (Kapur, 2019). Pollution also
affected within-city neighborhood choice in 19th century Britain (Hanlon, 2020; Heblich
et al., 2021), and recent reports of emigration following wildfires in California suggest that
this may not be solely a developing world phenomenon.4

We use the model to evaluate the effect of counterfactual changes in environmental
policy. In one exercise, we only halve the ‘exogenous’ component of pollution in Beijing
(say, by relocating upwind coal-fired plants,or investing in greener technologies), but allow
for pollution to rise as workers correspondingly migrate in. In another counterfactual we
halve the amount of total steady-state pollution (say, by setting pollution caps for Beijing),

2Our estimated elasticities are similar to credible estimates in the literature on the direct effect of pollution
on productivity (Adhvaryu et al., 2022; Chang et al., 2019; Kahn and Li, 2019), and worker location on ag-
glomeration (Moretti, 2004). If we were to discipline our model by calibrating elasticities from the literature
we would get similar quantitative results.

3See for instance, “Why leave job in Beijing? To breathe.” Wall Street Journal, April 14 2013.
https://www.wsj.com/articles/SB10001424127887324010704578418343148947824,
and also “Execs fleeing China because of bad air,” CBS news, Jan 29 2013,
https://www.cbsnews.com/news/execs-fleeing-china-because-of-bad-air/.

4See “How Climate Migration will Reshape America,” New York Times,
https://www.nytimes.com/interactive/2020/09/15/magazine/climate-crisis-migration-america.html.
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which would also be a function of endogenous feedback loops in our model. In each
scenario, incomes rise by more than 12%, mostly as a consequence of skilled workers
moving into Beijing.

We then investigate the effects of changing the spatial distribution of pollution within
the country (but holding total country-wide emissions constant) by moving pollution away
from cities with more skill-biased capital. Setting city-specific pollution caps increases
GDP by 6.7%, while relocating coal-fired plants away from such cities raises aggregate
Chinese GDP by 3.67%. Relaxing migration costs (less stringent hukou) amplifies effects.

Pollution-control programs recently introduced by the Chinese government suggests
that authorities already recognize such gains. The 12th Five-Year Plan sets targets for am-
bient concentrations of particulate matter, with more stringent targets for high-productivity,
polluted regions like Beijing.5 We use our model to quantify the consequences of this pol-
icy. Despite targeting only a subset of cities, this increases aggregate GDP in China by
3.6%. However, our simulations suggest the policy largely benefits skilled workers. Re-
ducing migration barriers in conjunction with pollution control would result in a more
equitable distribution of benefits across skilled and unskilled workers.

All these model simulations show that relocation of workers is a major driver of these
effects, as large as the direct effect of air pollution on health and productivity. The rela-
tionship between pollution and health is the subject of a large literature in economics and
epidemiology, but we learn that ignoring labor mobility grossly underestimates the overall
consequences of pollution on an economy’s prosperity. This is relevant for policy, as pollu-
tion and migration have been two of the defining features of Chinese growth (Brandt et al.,
2008; Tombe and Zhu, 2019; Zheng and Kahn, 2013).

Whether relocating pollution affects aggregate welfare (beyond productivity) depends
on the underlying reason as to why the high and low-skilled react differently. Survey data
shows that this is partly due to different preferences and environmental awareness of the
rich, and partly due to differential costs of migrating. Chinese cities have a point-based sys-
tem that exempts workers with skills or higher education from their hukou restrictions (Ta-
ble C1). Without the exemption, the system imposes a burden on poor in-migrants to cities
by limiting or prohibiting their access to many government-provided benefits (Combes
et al., 2019). With high mobility costs, unskilled workers may be trapped in low-wage pol-

5http://www.mep.gov.cn/gkml/hbb/bwj/201212/t20121205 243271.htm, accessed 9/17/19.
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luted cities even as their skilled counterparts leave, and our modeling shows that welfare
losses from pollution are magnified when migration costs are high.

Our work is related to several literatures and sub-disciplines in economics. We are
among the first to document how pollution and mobility interact to lower aggregate out-
put. While local development planners and news reports have worried that pollution causes
‘brain drain,’ our spatial general equilibrium analysis quantifies the productivity conse-
quences of such migration, and speaks to the urban and macroeconomics literatures. Sec-
ond, environmental economists have focused on how pollution lowers productivity via
threats to health, but we show that at least as important is the productivity effects of worker
re-sorting. This suggests that the productivity consequences of pollution may be twice as
large as what environmental and health economists previously taught us. And third, we con-
tribute to the long-standing debate among macroeconomists and development economists
on what explains the productivity gaps across regions within countries. Pollution explains
a substantial portion of these gaps in China.

Our primary contribution is in quantifying the aggregate productivity consequences and
studying policy counterfactuals. Other contemporaneous papers documented a reduced
form relationship between pollution and migration (Chen et al., 2022; Chen, 2023; Yu
et al., 2020). For example, Chen et al. (2022) infer migration responses to air quality from
data on population changes and find large mobility responses to pollution even during a
period when information on air quality was not readily available. While not our direct
aim, we do contribute to the reduced-form literature in a few ways. First, we use the 2015
Population Census of China on actual migration decisions (after pollution information was
widely disseminated), and longitudinal panels which track individual migration over time
from 2008-16 (before and after pollution information was disseminated) to explore the
relationship. Second, we use multiple sources of policy-relevant variation, and a battery
of sensitivity tests to build confidence in the pollution-migration relationship. Third, we
additionally document the changes in net populations similar to Chen et al. (2022), but
recognize them to be the consequence of re-sorting across all cities in general equilibrium.
Indeed, without a model, it is challenging to interpret reduced-form population changes as
all cities are indirectly affected, and there are no pure ‘control cities.’ Different data and
empirical strategies used by these papers produce results consistent with the mechanism
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highlighted in our paper.6 But, our model helps us answer questions different from all
other work: what are the macroeconomic consequences of pollution on production and
economic well-being, and what are the consequences of pollution control?

While rich, in some respects our model is intentionally parsimonious. We aim to pro-
vide a tractable framework, and estimate each parameter from within our data, rather than
calibrate it from other settings. Despite parsimony, in validation exercises, we match major
empirical patterns, suggesting these abstractions are unlikely to have implications.

2 Data and Measurement

2.1 Demographic and Migration Data
We measure internal migration using the 2015 Population Census of China. This is

the latest census with restricted public access, and importantly, the only population census
after both the 2008 disclosure of PM2.5 data by the US Embassy in China and city-level
PM2.5 data by the Chinese Government in 2012 (Appendix B). The census records de-
mographic and economic characteristics of individuals, including education, employment,
hukou location, and current residential city. We restrict our attention to the working age
population.

We define migration in a few ways. First, in the Census, migrants are defined as those
who are away from their hukou city for more than six months.7 Hukou status determines
citizens’ access to state goods (e.g., schooling) and services (e.g., marriage registries or
passports).8 Given the strong (forced) attachment to one’s hukou city, when a person’s
location of residence differs, it can be reliably characterized as migration.

Second, we construct an individual-level longitudinal panel using the China Labor-

6Xue et al. (2021) show that polluted Chinese cities experience drops in skilled executives once pollution
data was made public. Other work documents Chinese households’ willingness to pay to avoid pollution
using variation in housing prices (Freeman et al., 2019) and air filters (Ito and Zhang, 2019).

7This definition is consistent with other recent work on internal-migration in China (Combes et al., 2019;
Tombe and Zhu, 2019). Most people’s hukou city is their birth city. In the 2014 CLDS only 7% of respon-
dents’s a hukou city was different from their birth city. Additionally, it usually takes a long time for migrants
to obtain local a hukou. Some local governments require that migrants must work in the city for more than 3
years before applying for local a hukou.

8Hukou plays a critical role as an internal-passport which determines one’s entitlements to pursue many
activities and eligibility for state-provided goods and services in a specific place. Migrants who do not hold a
local hukou have limited or no access to many government-provided benefits, including public education for
children and medical care.
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force Dynamics Survey (CLDS), which records individual histories of location changes.
The CLDS is a national longitudinal social survey, with information on education, work
and migration experience. Since the survey asks retrospective migration histories of each
individual, we are able to construct a longitudinal panel of locations between 2008 and
2016. We define migration to be an indicator for whether an individual changed cities,
regardless of hukou status. The CLDS allows us to account for individual-specific unob-
servables, track those who have moved multiple times and those who have returned.

We supplement migration flows with the net stock of workers by skill level computed
using the Census. These changes in stock are the summary outcome of (net) migration de-
cisions for all reasons and through all modalities (whether or not individuals change hukou

status), and the object most sensible to use in our structural analysis for the quantification
of productivity. Our structural quantification helps account for the fact that changes in
the net-stock of workers cannot simply be interpreted as a migration response to pollution.
Jointly, the three different migration measures either follow best practice, or improve on the
approaches in the existing literature to measure migration in China. Since the 2015 Census
does not record individual-level wages, we use the CLDS to calculate city-and-education
specific average wage.

2.2 Air Quality, Inputs into Instrumental Variables and Controls
We use satellite data to measure air quality, which has a few advantages over official

sources. First, satellite-based PM2.5 measures are available for all cities between 1998
and 2015, whereas official PM2.5 data are only available since 2012.9 Second, official
air quality data may be subject to manipulation by local governments (Ghanem and Zhang,
2014; Greenstone et al., 2020). City-level annual PM2.5 concentrations are measured using
the Global Annual PM2.5 Grids derived from satellite data (Van Donkelaar et al., 2016).

We obtain information on large-scale (capacity>1 million KW) power plants and their
coal consumption from China’s Electric Power and Energy Statistical Yearbooks. We sup-
plement this with information on the establishment year of plants, the angle between their
locations and annual prevailing wind direction of each city, and distance to each city.

We collect data on thermal inversions from the Modern-Era Retrospective Analysis for

9PM2.5 is hazardous, considered to be the best indicator for pollution health risks, and has become the
dominant air pollutant in China in recent years (Barwick et al., 2019). We use the Air Quality Index (AQI)
released by Ministry of Environmental Protection (MEP) for robustness.
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Research and Applications (MERRA-2). For each 6-hour period, we calculate the tempera-
ture change from the first to the second above ground atmospheric layer. If the temperature
change is positive, a thermal inversion occurs and the difference in temperatures measures
the strength of thermal inversions.

Estimating the structural model requires us to develop a few other instruments. First,
we derive information from a large-scale university expansion in China at the turn of the
century that suddenly expanded college enrollment by 20% in certain cities, to identify
skilled-worker agglomeration effects. Second, we leverage variation in trade shocks to
identify migration responses to wages. Trade data are from the China Customs Database.

We collect city characteristics, such as population and GDP, from the City Statistical
Yearbooks. Weather data come from the Meteorological Data Service Center. We provide
more details on all data sets in a Data Appendix F.

3 Empirical Strategy
Our data allow us to examine pairwise flows between cities, as we do when we estimate

our labor supply curves in our general equilibrium analysis. Our regression analysis will
begin with the simplest specification: the effects of PM2.5 concentration in origin city o on
the amount of out-migration by skill group.

Mio = α +β1Log(PM2.5)o +Xβ + εio , (1)

where Mio is an indicator for whether or not individual i left origin city o, and X are controls.
The dependent variable is the actual migration decision (i.e., flows, rather than stocks). Af-
ter presenting the model, we show results using the net stock of workers by skill. Changes
to the net stock are difficult to interpret in reduced form without the aid of the model, as
the quantities of workers are determined in spatial general equilibrium.10

We use a few different identification strategies to isolate the causal effect of pollution
on migration: Panel fixed-effects models, as well as two different instrumental variables
strategies. We examine the same relationship using multiple data sources, different types

10When using net quantities of workers, there is no ‘control group,’ as all movement out of a polluted city
implies movements into a non-polluted city, violating the Stable Unit Treatment Value Assumption (SUTVA).
Our GE model helps interpret magnitudes in such a setting. The model also derives analogous bilateral origin-
destination and destination-level regressions, which we estimate after describing the underlying theory.
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of variation, and conduct specification tests, falsification tests, sample restrictions, and
different types of controls (see Appendix A and B).

3.1 Instrument 1: Wind Direction and Coal-Fired Power Plants

Figure 1: Wind direction, distance, and coal consumption in thermal power plants

(a) Depiction of instrument (b) First-stage relationship

Notes: In the left panel, the thick arrow represents the annual dominant wind direction of city o. The dark
dot represents a large-scale thermal power plant located at least 100km outside city o and within 500km
from the city. The angle α denotes the angle between the annual prevailing wind direction of city o and the
large-scale power plant. Large-scale thermal power plants are defined as plants whose installed-capacities
are larger than 1 million KW. In the right panel, cities are grouped into one hundred groups according to the
quantile of the wind direction IV measure. The y-axis denotes the mean value of PM2.5 in each quantile in
2015 and x-axis denotes the mean value of wind direction IV in each quantile.

Our first source of variation measures the extent to which each city is down-wind of
distant coal-fired power plants (Freeman et al., 2019). The instrument is a function of wind
direction and coal consumption in large-scale thermal power plants located in a 100-500km
radius around the city, penalizing plants farther away, and those located upwind of the city:

Log(PM2.5)o = γ0 + γ1

P

∑
p

(
1

αpo +1

)(
1

distpo

)
Cp + εo , (2)

where αpo denotes the angle between the annual prevailing wind direction of city o and
the plant p, distpo is the distance between the plant p and city o, Cp is the annual coal
consumption in plant p. Figure 1a explains the intuition. The underlying variation is driven
by how wind patterns blow pollutants from distant coal plants to cities. Indeed, as we later
show, the primary driving factor is simply the wind direction. Our first-stage relationship in
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Figure 1b shows that cities downwind from, and closer to, higher coal-consumption power
plants are more polluted.

We expect our instrument to be orthogonal to local economic activity. Large-scale
thermal power plants supply electricity to vast areas of China; many do not supply to nearby
cities, but rather to remote provinces (Freeman et al., 2019). Inter-province electricity
transmission is prevalent in China. For example, in 2016, Yunnan province transmitted
about half of its power output to other provinces, and Sichuan province transmitted 40%
of its power output to other provinces. Large-scale power plants are mainly responsible for
the power generation for inter-province electricity transmission in China (Freeman et al.,
2019). Local governments find it difficult to exert influence the setup of large plants, their
siting decisions, or allocation of electricity from them. The impact of distant plants on local
economic activity is thus small, and we chose to focus on plants at least 100km away to be
cautious.

3.2 Instrumental Variable 2: Thermal Inversions
Our second instrument uses the number and strength of thermal inversions, a meteo-

rological phenomenon where the above-ground temperature is abnormally higher than the
ground temperature, trapping pollutants. This has been used as an instrument for air quality
in Mexico (Arceo et al., 2016; Molina, 2021), the US (Hicks et al., 2015) and Sweden (Jans
et al., 2018), among other places. Most recently, Chen et al. (2022) show that the number
of thermal inversions predicts the movement of people across China. We use newer migra-
tion data from the 2015 Census at the individual level, rather than quantifying migration
indirectly from population changes.

We create two measures of inversions in city o: the number of thermal inversions in
each year, and the annual mean strength of these inversions.11 As polluting potential rose
over time in China, areas with more thermal inversions trapped pollutants in the nearby
atmosphere (Figure 2). The right panel shows a strong first stage. In our specifications we
control for time-varying weather amenities, show variants of our measures of inversions,
and show how past pollution does not predict future inversions.

11The literature argues that inversions are assumed to be exogenous for three reasons. First, temperatures
from one year to the next within a region are considered to be exogenous (Dell et al., 2012). Second, in the
atmospheric dispersion literature, pollution is a function of winds, settling and emissions; whereby inversions
reduce atmospheric ventilation and traps pollutants (Sharan and Gopalakrishnan, 2003). Third, inversions are
a function of chemical potential and natural parameters (Ferrini, 1979) .
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Figure 2: Thermal Inversions and Air Quality

In the left panel, we divide cities into the two groups based on whether or not they lie above the average
annual occurrence of thermal inversions. The red line represents the mean value of PM2.5 in cities where the
occurrence of the thermal inversions are above average. The violet line represents the mean value of PM2.5
in cities where the occurrence of the thermal inversions are below average. The green-dash line presents
the average annual occurrence of thermal inversions. In the right panel, cities are grouped into one hundred
groups according to the quantile of the occurrence of thermal inversions. The y-axis denotes the mean value
of PM2.5 and x-axis denotes the mean occurrence of thermal inversions in each quantile.

4 The Relationship Between Pollution and Migration
We first describe the spatial and temporal patterns of pollution, migration and wages in

the raw data. Figure 3a plots the time trend of annual PM2.5 concentration by city (which
exceeds WHO guidelines, every year). The figure also shows that the increase in the mean
coincided with increases in cross-city dispersion of pollution (Figure C1a). The increase
in the mean and variance was driven by dramatic increases in PM2.5 in a subset of cities.
Figure C1b shows that both wages and the cross-city variance in wages rise over time. If
this implies an increase in the spatial dispersion of marginal products of labor, then it raises
the possibility that moving workers from low marginal product to high marginal product
cities increases aggregate output.

Figure 3b shows the spatial variation in annual average satellite PM2.5 concentration
for 2015. The north-east and east experience severe air pollution. The north-east further
suffers from coal-burning for heating, whereas the east has manufacturing industries.12

Correspondingly, low-skill emigration rates are high in the south of China (Figure 4a),

12Dust-storms in southern Xinjiang province are responsible for the isolated area of high particulate matter
observed in the west. This area is otherwise not highly economically active.
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Figure 3: The Distribution in Pollution Across Cities and Over Time

(a) Change in mean PM2.5 over time (b) PM2.5 Concentration in China

Notes: Spatial and temporal distribution of PM2.5 using the Global Annual PM2.5 Grids. The map shows the
geographic spread in 2015. Figure 3a shows the increase in PM2.5 over time for the 100 largest cities, relative
to the 1998 PM2.5 value (the difference with respect to 1998). The red line is the unweighted average.

while high-skill out-migrants are comparatively more populous in the north-east and the
east (Figure 4b). These figures therefore jointly suggest that pollution is more spatially
correlated with high-skilled emigration rather than low-skilled.

Figure 4: The Geographic Distribution of the Share of Out-Migrants by Skill

(a) Share of Low-Skill Out-Migrants (b) Share of High-Skill Out-Migrants

Notes: Low-skilled denotes people whose highest degree is high school or below. High-skilled have highest
degree some college or above. Out-migrant shares are ratio of those who leave their hukou city for more than
six months, and the number of people whose hukou location is a given city.
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Figure 5a shows a clear positive association between pollution and high-skill emigra-
tion: the college-educated are more likely to leave polluted areas. Finally, Figure 5b shows
that the wage returns to skills are higher in polluted cities, where skilled workers have emi-
grated from.13 Figure 5b also highlights a key insight about the benefits of pollution control
policy that will emerge in our model: Reducing PM2.5 in high-polluted cities induce high-
skilled workers to move to where their skills are relatively scarce (and so their marginal
product may be higher), and this re-sorting raises aggregate productivity.14

Figure 5: The Effects of High PM2.5 at Cities

(a) High-Skill Emigration Share and PM2.5 (b) Returns to Skill and PM2.5

Notes: The share of high-skilled out-migrants is the share of some college (or above)-educated emigrants
from the city-level college-educated hukou population. ‘Returns to skill’ denotes the return to some college
or above education. Each bubble is a city. The bubble size is weighted by the population in 2000.

4.1 The Causal Effect of Pollution on Migration
In Table 1 we examine the effect of pollution on an individual-level binary indicator of

leaving one’s hukou city. We show results separately for those with some college degree
or above, and those without. We control for demographics, and for distances to three large
seaports to account for the spatial distribution of economic development.

The OLS estimates in Panel A suggest that air pollution leads to the emigration of all
types of workers, and this effect is statistically stronger for those with higher education.
Columns 4-6 employ our first instrument based on wind direction and distant coal-fired

13Our estimates of returns are consistent with recent estimates from other work (Giles et al., 2019).
14Our results confirm Au and Henderson (2006) who show that Chinese cities are ‘undersized,’ and so less

urban immigration is not welfare-enhancing.
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Table 1: Pollution and Out-Migration

Dependent variable: Leave hukou city indicator
Panel A OLS Regression Wind+coal IV

Full sample Low edu High edu Full sample Low edu High edu
(1) (2) (3) (4) (5) (6)

Log(PM2.5) 0.0428*** 0.0399*** 0.0501*** 0.0772** 0.0609 0.140***
(0.00974) (0.00993) (0.0112) (0.0389) (0.0423) (0.0382)

Coeff diff pval 0.00 0.00
Observations 761,548 643,124 118,424 761,548 643,124 118,424
R-squared 0.029 0.030 0.045
F-test of IVs 52.53 46.52 41.54

Dependent variable: Leave hukou city indicator
Panel B Number of inversions Strength of inversions

Full sample Low edu High edu Full sample Low edu High edu
(1) (2) (3) (4) (5) (6)

Log(PM2.5) 0.0906*** 0.0871*** 0.112*** 0.0779*** 0.0740*** 0.107***
(0.0202) (0.0211) (0.0233) (0.0228) (0.0238) (0.0279)

Coeff diff pval 0.00 0.00
Observations 761,548 643,124 118,424 761,548 643,124 118,424
F-test of IVs 102.5 97.33 84.83 51.09 49.60 40.54

Notes: Individual level regressions in 2015 across 332 cities. Standard errors clustered at the hukou city level
are reported in parentheses. ‘Coeff diff pval’ reports the p-value of a test of coefficient equality between the
low and high educated groups, using the Fisher’s permutation test (following Cleary (1999), Brown et al.
(2010) and Keys et al. (2010)). This bootstraps to calculate empirical p-values that estimate the likelihood of
obtaining the observed differences in coefficient estimates if the true coefficients are, in fact, equal. The
instrumental variables specification in the top panel uses the interaction between wind direction, distance to
coal plant, and coal consumption at power plant. Instrumental variables specifications in the bottom panel
use thermal inversions. All panels have: (a) City controls which include the log distance to Shanghai
seaport, to Tianjin seaport and to Shenzhen seaport, and (b) demographics which include age, age-squared,
gender, marital status, and an urban hukou indicator. The bottom panel using thermal inversions also have
(c) weather controls which include temperature, wind speed, sunshine duration and humidity.Standard errors
clustered at the hukou city level are reported in parentheses. We report Kleibergen-Paap rk Wald F statistic.

power plants (Freeman et al., 2019). The differential impact by skill level increases in
magnitude when using our instruments. A 10% increase in PM2.5 raises out-migration
rates by 0.77 percentage points overall, with the effect being meaningfully larger for those
with higher education (1.4 percentage points) than those without (0.61 percentage points).
The high and low-skill emigration responses are statistically different.
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In Panel B, we study how variation derived from thermal inversions affects out-migration.
We follow the literature, and control for weather amenities (Arceo et al., 2016; Molina,
2021). Again, the emigration response is more pronounced for high-skilled workers. A
10% increase in PM2.5 leads to a 1.12 percentage point increase in emigration rates for
those with higher education, but only 0.87 for those without.

Appendix A.1.1 provides further details on our IV strategies. Table A1 shows (strong)
first-stages. Columns 1-3 of Table A2 estimate a stacked regression, interacting pollution
levels with skill levels (imposing common coefficients for all controls), showing again
that the effect on the high skilled is larger. Our baseline specification that estimates these
responses by splitting the sample, implicitly includes skill-specific controls, which allow
us to capture the fact that the importance of distance to large cities and demographics
may differ by skill level. In columns 4-6 of Table A2, we disaggregate education levels
into more fine-grained categories and see an education gradient in emigration. Table A3
combines multiple instruments, and conducts overidentification tests.

Table A4 shows that workers also pay attention to the pollution levels at destinations,
in deciding where to migrate to. In other words, workers leave polluted areas, and also
seek out less polluted cities. Again, like the emigration response, the immigration location
choices are more sensitive to pollution among higher educated workers.15 In Section 6.2,
we estimate a more comprehensive specification, documenting the pairwise flows between
cities instrumenting for pollution. The model allows us to also account for changes in
pollution in response to migration, as migration itself may affect pollution. These facts
discipline our model: Fewer skilled workers in a polluted city raise the skill wage, and
so cleaning up polluted cities will move skilled workers to cities with a higher marginal
product, increasing aggregate output via relocation

4.2 Alternative Specifications, Robustness and Heterogeneity
In Appendix A.1.2 we examine various threats to identification. We summarize the

results of these exercises in Figure 6, where a simple pattern emerges: both the high and
low skilled emigrate from polluted cities, but the effect on the high skilled is stronger.
These relationships are stable across specifications.

First, we evaluate the claim that plants may be systematically built near poorer, less

15Together, the in-migration and out-migration affect net population changes in a manner only slightly
smaller than document by (Chen et al., 2022).
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influential cities, and so the instrument may be correlated with unobservable characteristics
of nearby cities. In Table A5, we exclude nearby plants, either in a 200km or a 400km
radius of a city, and find that, if anything, our results are more precisely estimated. We may
also be concerned that new plants are subject to more regulation as the Chinese government
only recently paid attention to environmental issues. So, in Table A6, we restrict our sample
to only old plants, and find similar effects. Table A8 demonstrates that the variation of our
wind direction and coal-plants IV is primarily driven by wind direction, rather than distance
and coal consumption. Table A9 shows policy makers do not intentionally avoid locating
power plants upwind of politically important or populous cities. We show that baseline
population, GDP and electricity consumption do not predict future upwind plants, or future
iterations of our IV (Table A10). Our results suggest that it is not that policymakers avoid
richer, influential cities when building plants, and that plants are not built in areas with
higher need for electricity, perhaps as most electricity is directly supplied to the larger grid.

In Table A11, we create ‘placebo’ instruments, artificially changing the wind direction
and showing that these falsified instruments are less likely to predict pollution levels and
migration decisions. Similarly, for our thermal inversion instruments, in Table A12 we
show that lagged pollution levels do not predict future inversions. Indeed, even lagged
inversions do not predict future ones – suggesting that their occurrences are hard to predict.

In Appendix A.1.3 we exploit a different source of pollution variation, driven by the
Huai river heating policy (Chen et al., 2013) which generated an artificial discontinuity in
air quality on two sides of the river. North of the river, the government encouraged central-
ized heating systems which primarily relied on coal-fired boilers, leading to a discontinuity
in air quality across the river. While there is no differential out-migration in areas imme-
diately north versus south of the river, skilled workers are discontinuously less likely to
migrate into the more polluted cities just north of the river. We limit this discussion to the
appendix, as the Huai river RD estimates a LATE difficult to relate to our model, as it may
capture migration over short distances across the river.

In Appendix A.2, we turn our attention to studying different model specifications, sub-
samples, and checking the robustness of our estimates to different controls. Figure 7 sum-
marizes the results of this large set of robustness exercises.

First, in Appendix A.2.1 Table A13, we show similar patterns using an individual-
level longitudinal panel data and a different definition of migration. The longitudinal panel
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allows us to track individuals’ spatial sorting over time, and control for individual fixed
effects. Importantly, we define migration to be an indicator for whether or not an individual
changed their city, regardless of whether they change their hukou.

In Appendix A.2.2 Tables A14 we study cumulative pollution exposure and find that
pollution exposure spread over a longer time period has a larger impact than shorter time
frames. In Appendix A.2.3 Table A15 we firstly exclude large, influential cities, cities
that pollute a lot, and major province capitals, to account for any differences in political
influence or outliers in the access to skilled jobs. We then drop coal producing regions as
coal plants may locate near coal production. We find that youth are more responsive to
pollution when making location choices (Table A16).

Table A17 uses the widely reported/publicized Air Quality Index (AQI) as the endoge-
nous variable of interest, capturing the combined impact of many pollutants. In Appendix
A.2.4 Table A18, we also control for annual rainfall, elevation, area under water, and coast-
lines. Table A20 highlights robustness to a long list of socioeconomic controls, including

Figure 6: Different Sources of Variation

Notes: Summary of Appendix A.1 results using different sources of variation. We compile coefficients
from different specifications. On the left we show both the coefficients on high and low skilled workers. On
the right, we concentrate on high-skill workers, and include 95% confidence intervals. Instruments include
number (“No. Invers” for short) and the strength of thermal inversions (“Strength Invers”) as well as differ-
ent versions of the wind direction and coal-fired power plants IV (“Wind IV”). “+Weather” include weather
controls. “No Wind” excludes wind direction from the IV. “Wind: 20 yrs ago” relies on plants built before
1995, and excludes newly built power plants. We do this so as to allay any concerns that newly built plants
may be placed endogenously simultaneously based on wind direction, distance to cities and access to coal.
The “Wind IV 400-900 km” IV excludes any plants built within a 400km radius from a city and instead only
captures plants built 400-900 km away. This is done to allay concerns related to the endogenous placement
of plants in close proximity to the city.
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Figure 7: Different Models, Samples and Controls

Notes: Summary of results using different models, samples and controls. We compile coefficients from
different specifications. On the left we show the coefficients on high and low skill workers. On the right, we
focus on high-skilled workers, and include 95% confidence intervals. Individual longitudinal panel accounts
for individual fixed effects (“INDV panel”), for local weather conditions (“INDV panel+weather”) or region-
specific trends (“INDV panel+region trend”). “5 yrs - 18yrs” aggregates past pollution into different time
periods. “No Beijing” excludes Beijing. “AQI” is the Air Quality Index outcome. Different “Economy”,
“Skill”, “Emission” and “Electricity” controls are described in Appendix A.2.4.

the skill-distribution, baseline economic indicators, and industrial pollutants.
Finally, in Appendix B, we show that the disclosure of official pollution data affected

migration (Table B1). The striking consistency of the migration response to pollution,
especially among the high-skilled, across a large set of robustness checks, many different,
independent sources of variation in the data, different estimation strategies, samples and
variable definitions, gives us confidence that we are indeed identifying an effect that is real.

4.3 Wage Returns and Pollution
This spatial re-allocation of skilled workers could produce a systematic relationship be-

tween pollution and the returns to skill across cities. If differential migration patterns alter
the equilibrium stock of workers, then the relative scarcity of skilled workers in polluted
cities may be associated with higher returns to skill. Additionally, given the complemen-
tarity between skilled and unskilled workers, cities that lose skilled workers will have less
productive unskilled workers. As such, cities that lose skilled workers have higher skilled
and lower unskilled wages, and therefore higher skill returns.

Table 2 documents a simple empirical fact: As in the raw-data plot of Figure 5b, returns
to skill are higher in polluted cities. Since, larger cities may be both more polluted and
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Table 2: Pollution and Returns to Skill

Dependent variable: City-specific returns to college education
OLS Wind+Coal IV

(1) (2) (3) (4)

Log (PM2.5) 0.234* 0.428*** 1.067*** 1.974***
(0.123) (0.132) (0.304) (0.540)

Observations 129 129 129 129
R-squared 0.026 0.089
City controls No Yes No Yes
F-test of IVs 39.41 22.29

Notes: City-level regressions of 130 cities weighted by 2000 population, for the sample of CLDS cities with
non-missing skill-specific wage data. Robust standard errors are reported in parentheses. We report
Kleibergen-Paap rk Wald F statistic. Instrumental variables specification using the interaction between wind
direction, distance to coal plant, and coal capacity of plant. City controls include the log distance to
Shanghai, Tianjin and Shenzhen seaports. Returns to college education is calculated as the coefficient on
‘some college or above’ indicator in Mincer wage regressions controlling for age and gender. These
regressions were done for each of the 130 cities in the CLDS data separately, as in Dahl (2002).

have higher premiums (Dingel et al., 2019), we use our instruments to address endogeneity
concerns. We estimate the city-specific Mincerian returns using the CLDS data (as in Dahl
(2002)), and explore the relationship between pollution and skill returns.16

4.4 Why are the High-skilled More Sensitive to Pollution?
Other than typical pecuniary migration costs, households must deal with institutional

hukou policy which makes it difficult for unskilled workers to be mobile. In Table C1
we show how educational attainment can help gain hukou at certain destinations. Migra-
tion costs (both physical and institutional) may inihibit workers from accessing high-return
locations, exacerbating productivity losses.

Different preferences or attachments may also drive the differential mobility responses
we observe. Importantly, pollution concerns may loom larger for skilled workers, as the un-
skilled are focused on making ends meet with lower wages. Table C2 shows that educated
workers are significantly more likely to discuss environmental issues, make donations for

16Even though the emigration of high-skill workers will tend to lower the low-skill wage, we should note
that it is not necessary that the low-skill wage reduces with pollution. This is because the emigration of low-
skill workers will tend to raise the low-skill wage, making the overall effect on low-skill wages ambiguous.
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environmental protection, and appeal or raise concerns on environmental problems. The
differences in migration patterns by skill therefore partly reflect differences in preferences,
and partly differences in mobility restrictions.

5 Theoretical Framework
Our simple theoretical framework aids quantification of the productivity consequences

of pollution-induced migration. Our model captures a few key features necessary for quan-
tification. First, we endogenize the compensating differential, allowing pollution to have
differential effects on the utility of skilled and unskilled workers. Second, mobility costs
vary by skill. Together, these contribute to empirical patterns that show a differential out-
migration by skill. Third, as college educated workers leave polluted cities, the marginal
product of skilled labor rises. If skilled and unskilled workers are substitutes, the marginal
product of unskilled work should fall. If there is some complementarity in production, the
unskilled wage and skill-premium should rise (consistent with our observation that returns
to skill are higher in more polluted regions).

We allow for additional channels as well. The changing structure of skills in a city
affect production and pollution levels as population increases or the presence of more
skilled workers may induce either more or less pollution-intensive industries to expand.
This feedback effect of migration patterns on pollution emissions affects subsequent mi-
gration, which in turn affects production, and so on. Additionally, agglomeration may
increase aggregate productivity if skilled workers converge, but house prices may also re-
spond to such movements creating congestion. Finally, we allow pollution to affect the
health (and lower the productivity) of all workers.

Our framework accounts for these feedbacks and generates estimable equations that we
identify using instrumental variables. We summarize the model in a flowchart in Figure E1.

5.1 Production and Labor Demand
Aggregate output Yd in destination city d depends on Ld (effective labor), Kd (capital),

and Ad (TFP). TFP varies across cities, and depends on air quality Zd and agglomeration
forces. Ld depends on labor Lsd at each level s = {h,u}, high-skilled h and unskilled u.

Yd = AdLρ

d K(1−ρ)
d where Ld =

(
∑
s

θsdL
σE−1

σE
sd

) σE
σE−1

(3)
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0 < ρ < 1 is the share of output accruing to labor, θsd > 0 is the productivity of workers
with skill level s, and σE > 0 is the elasticity of substitution across skill groups. We do not
impose complementarity, and instead will be estimating σE .

Capital, Kd , is perfectly elastically supplied across cities at rental rate R∗, an assumption
that can be relaxed.17 We also allow for TFP Ad , to have a fixed city-specific component,
essentially allowing a certain fraction of capital to be immobile (Brandt et al., 2013). The
skill-biased productivity parameter θsd captures the productivity of each skill level. For
instance, θhd increases with an increase in high-skill capital.18 θhd also captures policies
that raise wages for skilled workers. The value of θsd therefore varies across cities because
of the variation in skill-biased capital, and other factors that make workers of a skill-group
more productive in d. The average log earnings for skill s in destination d are:19

logwsd = log
(

∂Yd

∂Lsd

)
=

1
ρ

logAd + log ρ̃ + logθsd +
1

σE
logLd −

1
σE

logLsd , (4)

where log ρ̃ ≡
(

1−ρ

ρ

)
log
(

1−ρ

R∗

)
is common across all cities and workers. For tractability,

output is a freely-traded numeraire, but housing is not traded across cities, and will have
price effects across cities.20

Let us consider the determinants of the high-skilled wage whd . First, Ad is the amount
of TFP in the city, which raises average earnings of all. Second, θhd is the higher skill-
biased productivity associated with more education. Not only are skilled workers more
productive, but variation in the supply of skill-biased capital across cities affect earnings.
Third, earnings differ due to differences in the supply of more educated workers Lhd . As
with any downward sloping demand curve, the more skilled workers there are, the lower the

17We show derivations and model extensions in our Appendix E.2.
18Skill-biased capital for high-skilled workers captures the presence of industries that hire college workers,

such as finance, technology, skilled manufacturing, and professional services. For completeness, in our
Appendix E.2, we explicitly model skill-biased capital within the nested CES framework and show how
incorporating it does not affect the qualitative predictions. As we already model a freely traded Kd , we allow
ksd to be not tradable across cities, so that cities have certain inherent ‘infrastructure’ as well.

19This is at the optimal value of K∗
d , so that Yd = A

1
ρ

d

(
1−ρ

R∗

) 1−ρ

ρ

Ld .
20We keep our focus on migratory frictions, and abstract away from location-specific trade costs (Tombe

and Zhu, 2019), given the absence of high-quality cross-city trade data. Since we have only one traded good,
trade costs are unlikely to affect our equilibrium. With multiple goods and trade frictions, more productive
cities would have lower prices, and if anything, the welfare effects of moving pollution away from productive
cities (and inducing in-migration) could be even larger.
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skilled wage. Yet, Ld captures production complementarities, whereby an increase in the
number of unskilled workers may raise the skilled wage. Equation 4 is the (inverse) labor
demand curve and highlights the importance of elasticities: how much the skill distribution
affects the difference in earnings depends on the elasticities of substitution σE . Migration
of skilled or unskilled workers will change these quantities and affect skill-premia.

As workers move, this affects pollution levels, agglomeration and house prices, partially
through changes in the sectoral composition of production (Duranton and Puga, 2005) and
partially through different consumption preferences. First, in equation 5, each city has some
‘exogenous’ component of pollution Z̄d , that (say) depends on the occurrence of thermal
inversions. Yet, equilibrium pollution levels Zd depend on other endogenous workforce
composition and production changes, which in turn raises pollution. The increase in pol-
lution depends on both aggregate population (the size of the economy and industry, and
congestion) (Rendon et al., 2014), and the skill mix, which change the type of production
(industry vs services), amenities, energy consumption, or even local pollution policies:

Zd = Z̄d

(
Lhd

Lud

)ψ1

(Lhd +Lud)
ψ2 (5)

We also allow for agglomeration economies, and for pollution to directly affect pro-
ductivity. In equation 6, Ād is ‘exogenous’ city-level productivity (fertile soil, rivers, land,
immobile capital, etc.), that does not move (i.e. a fixed factor of production). If φ1 < 0,
pollution lowers the productivity of all workers, both high-skilled (Chang et al., 2019) and
low skilled (Zivin and Neidell, 2012). We expect the number of skilled workers to raise
TFP levels in the city via non-excludable innovation, such that φ2 ≥ 0:

A
1
ρ

d = ĀdZφ1
d Lφ2

hd (6)

5.2 Migration and Labor Supply
Workers have preferences over locations (be closer to home or certain cities). Indirect

utility of worker j, with skill s, in destination d, from origin o is:

Vjsod = µ jsdwsdZ−γs
d hp−νs

d asdξsodexp−Msod , (7)

22



where µ jsd is a random variable measuring preferences for a specific city d by individual
j. A larger µ jsd means worker j is particularly attached to city d. Msod captures migration
costs between o and d, including hukou, and physical costs that increase with distance. Mi-
gration costs vary by education level, and Msoo = 0 for natives. hpd are housing prices, and
νs are the share of expenditures on housing by skill. 21asd represents other non-pollution re-
lated skill-specific amenities of city d. ξsod (an error term) are differences in skill-specific
amenities that depend on the origin. The compensating differential elasticity by skill is
captured by γs.22 Marginal workers are induced into migration by pollution, while infra-
marginal workers have higher utility in the city they live in.

We assume that µ jsd are independently distributed and drawn from a multivariate ex-
treme value distribution. The joint distribution of µ jsd is given by:

F(µs1, ....µsD) = exp

(
−

D

∑
d

µ
−ηs
sd

)
, (8)

where 1
ηs

determines how strong the idiosyncratic location preferences are, and so how
responsive workers are to wage or pollution changes. If location preferences are strong,
then workers are less likely to migrate in response to pollution.

Workers move to where their utility is higher. Given moving costs, there are no further
arbitrage opportunities. Local ties and migration costs (including hukou and distance) are
captured by µ jsd and Msod respectively. The share of workers with skill s from city o that
move to d is:

πsod =

[
wsdZ−γs

d hp−νs
d asdξsodexp−Msod

]ηs

∑d′

(
wsd′Z−γs

d′ hp−νs
d′ asd′ξsod′exp−Msod′

)ηs
(9)

Worker supply of skill s in city d–Lsd depends on the hukou origin population o–Pos. Thus,
Lsd = ∑o Posπsod . Taking logs of equation 9, we derive the labor supply curve:

log πsod =−ηslogVso +ηs (log wsd −νslog hpd)+ηslog asd −ηsγslogZd −ηsMsod + ξ̃sod ,

(10)
21Diamond (2016) and Piyapromdee (2021) also use a Cobb-Douglas utility function to analyze the mi-

gration choices of people and allow the share of housing expenditure in income to differ by skill in the utility
function

22If γh > γu, good air quality is a normal good.
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The error ξ̃sod is ηslogξsod . Vso captures the average utility of being from city o:

Vso =

(
∑
d′

(
wsd′Z−γs

d′ hp−νs
d′ asd′exp−Msod′

)ηs

) 1
ηs

(11)

Note that because of migration costs, utilities are not equalized across cities, and as such
the term has an o subscript. For instance, if a high-amenity city has a very restrictive
hukou policy, it may have a high average utility as not enough people can enter, lowering
wages and raising house prices. Yet, higher hukou restrictions will lower the utility for all
individuals in other cities, as their option value of moving to a potentially desirable location
falls. Therefore, Vso depends on city-specific mobility costs.

From equation 10 we see that ηs is the elasticity of labor supply. If workers are attached
to their location, or migration costs are high, then workers will not move even if pollution
is high or wages are low. Earnings differentials reflect compensating differentials (for
pollution and other amenities) and migration costs.

While we do not explicitly model housing supply, like in Moretti (2011), we assume a
simple housing market of the form hpd = (Lhd +Lud)

ψ3(Lhd
Lud

)ψ4 , where more people in the
city raise house prices, and wealthier residents raise them further.

5.3 Equilibrium and Elasticities
Equations 3-10 characterize the model’s equilibrium, which can be described as a set of

wages, amenities, house prices, migration costs and labor allocations, such that workers are
paid their marginal product, and workers choose cities. The model is characterized by a set
of exogenous factors: city level producitivities Ād , populations of the skilled and unskilled
L̄h and L̄u, migration costs Msod , amenities αsd , skill-biased capital θsd , and exogenous
components of pollution Z̄d; and a set of parameters (σE ,γs,ηs,φ1,φ2,ψ1,ψ2,ψ3,ψ4), that
determine the quantities Ad,Yd,Lhd,Lud,Zd,Kd and prices whd,wud,hpd,R∗.

In equilibrium, the labor market clears for each skill level {h,u}. The supply of Lsd

equals the demand for Lsd for all d, and all skills {h,u}. The sum of shares of migrant
and non-migrants adds to one, or ∑d πhod = ∑d πuod = 1 ∀ o. Output produced in a city is
consumed in the city d, and there are no savings. Country GDP is simply the sum of output
in each city Y = ΣD

d Yd . Our model contains congestion forces (such as pollution and house
prices) and agglomeration (effects on TFP). An equilibrium is unique if congestion forces
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are at least as large as the agglomeration forces. As in Ahlfeldt et al. (2015), we envision
that if there were to be multiple equilibria, we would select the counterfactual equilibrium
closest to the observed real-world outcome.23

6 Estimation of Model Parameters
Section 4.1 confirmed two important model results. As (exogenous) air pollution in-

creases, skilled labor emigrates, raising the returns to skill. Yet, our model makes clear
that the observed empirical relationship between exogenous air quality Z̄d and the supply
of workers by skill is not simply the partial migration response to pollution due to γs (de-
termining the compensating differential). Instead, in GE it is the result of corresponding
migration changes as wages change, given ηs (labor supply elasticity based on local ties
and preferences). The wage changes in turn depend on σE , the elasticity of substitution
across skills in production (relative labor demand elasticity). And worker relocation fur-
ther changes pollution (given ψ1 and ψ2), and other factors (house prices, agglomeration,
etc.). As such, any empirical relationship between population changes and pollution, iden-
tify a coefficient that is a joint function of these model parameters, which in turn determine
the quantitative consequences of pollution on productivity.

We estimate the elasticities: {σE ,ηs,γs,ψ1,ψ2,ψ3,ψ4,φ1,φ2} and city-level parame-
ters: {θsd,αsd,Msod} based on city-level relationships for a set of large and medium-sized
cities where we have consistent data on all the variables across years. We control for city
characteristics as before, and show robustness to alternate sources of variation. Our esti-
mates are similar to the literature. While we could calibrate our model from the literature,
we prefer using parameters causally estimated within our own model and data.

6.1 Labor Demand Curve: Estimating σE

Since σE determines the change in relative skill-unskill wages in response to changes
in relative skill-unskill workers, we derive a relative demand curve from equation 4, where
within city d, output (and other city characteristics) are differenced out:

log
whd

wud
= log

θhd

θud
− 1

σE
log

Lhd

Lud
(12)

23We describe conditions that determine the existence and uniqueness of the equilibrium in Appendix E.3.
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The parameter σE , can be estimated from this relative labor demand curve, as exogenous
shifts in relative labor supply logLhd

Lud
trace out the relative labor demand curve and iden-

tify the slope, 1/σE . As the relationship between the number of workers and wages is
determined in equilibrium, we leverage exogenous variation in pollution to identify this re-
lationship. For example, excess pollution from thermal inversions shifts labor supply, and
traces out the labor demand curve. To estimate equation 12, we derive variation in logLhd

Lud

from equation 13, again instrumenting for pollution levels:

log
Lhd

Lud
= α0 +α1 log PM2.5d + ε1d (13)

In Table 3, we use each of our instruments for pollution and estimate equation 13 in the
columns where our outcome is the relative stock of workers Lhd

Lud
, capturing the net migration

for all types of workers (whether or not they changed hukou location).

Table 3: Estimating Labor Demand Elasticities

IV: Coal+Wind IV (<500km) Coal+Wind IV(100-500km) No. of inversions Inversion strength
Ln wh

wu
Ln Lh

Lu
Ln wh

wu
Ln Lh

Lu
Ln wh

wu
Ln Lh

Lu
Ln wh

wu
Ln Lh

Lu
(1) (2) (3) (4) (5) (6) (7) (8)

Log(PM2.5) 1.000** -1.238** 1.496*** -1.917*** 0.491* -0.945** 0.611** -1.174**
(0.508) (0.629) (0.518) (0.741) (0.266) (0.421) (0.295) (0.485)

Observations 130 130 130 130 130 130 130 130
City Controls Y Y Y Y Y Y Y Y
Weather N N Y Y Y Y Y Y
F-stat 20.54 20.54 18.74 18.74 68.84 68.84 45.41 45.41
σE 1.24 1.28 1.92 1.92

Note: We combine population census data and CLDS data. City level regressions in 2015 using 130 cities
that have non-missing skill-based wage information from CLDS. Skilled workers denote those whose
highest degree is some college or above, unskilled workers denote those whose highest degree is high school
or bellow. City controls include distance to Shanghai, Tianjin and Shenzhen seaports. In columns 1-2, we
use the wind direction IV constructed using power plants located outside a given city and located within 500
km of the city. In columns 3-4, we use the wind direction IV constructed using plower plants located 100-
500 km away of a given city. Robust standard errors reported in parentheses. We report Kleibergen-Paap rk
Wald F statistic. All regressions weighted by the population in 2000. ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.

In Table 1, we had used individual-level data to show how the emigration response
to pollution was larger for the high-skilled, while Table A4 showed that in-migration was
similarly skill-biased. These differential migration flows affect the relative stocks of skilled
and unskilled workers at the city level, as we see in Table 3. In equilibrium, cities that have
(exogenously) higher level of pollution, have a lower skill ratio Lhd

Lud
.
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Along with the columns of Table 3 where the outcome is logwh
wu

, we estimate equation
12. We take the ratio of the IV relationship for quantities and wages of workers. For
instance, in the first two columns, we find that the elasticity of substitution across skill
levels is σE = 1.238/1.0 = 1.238, an estimate close to the estimates in the US (Card and
Lemieux, 2001). If we were to calibrate elasticities-of-substitution from the literature it
would produce similar model counterfactuals below.

6.2 The Labor Supply Curve: Estimating (ηs,γs) and {Msod}
The labor supply curve in equation 10 captures bilateral migration flows between city

pairs as a function of real wages and pollution at possible destinations, and migration costs
between origin-destination pairs. We first parameterize migration costs Msod:

Msod = λ1slog Distod +λ2s (1Migrantod ×hukousd) , (14)

where log Distod is the log of the distance between cities o and d, 1Migrantod is an indicator
for whether o ̸= d, which is when hukou restrictions can bind. The skill-specific hukou

index hukousd , derived from Zhang et al. (2018), measures the ease with which either
skilled or unskilled workers can move into city d.24 The distance term captures physical
and psychic costs associated with moving far away from one’s origin city. The interaction
of hukou index and migration status captures institutional migration costs. Substituting
equation 14 in 10 generates an estimable equation for labor supply:

log πsod =−ηslogVso +ηs (log wsd −νslog hpd)−ηsγslogZd +Xβx

−ηsλ1slog Distod −ηsλ2s (1Migrantod ×hukousd)+ ε2sod , (15)

where the residual ε2sod =
(

ηslog asd + ξ̃sod

)
includes differences in destination city ameni-

ties asd and other idiosyncratic bilateral features ξ̃sod . Below, we describe how we derive
amenities asd from residuals by inverting the model. In our estimation, we include origin-
city-by-skill fixed effects to control for ηslogVso. We include controls, X, including a city’s
hukousd index. As such, the interaction with migration status allows us to isolate the part
of hukou index that affects migration costs, while controlling for the index accounts for

24The index measures the difficulty of obtaining a local hukou. A high index (most major cities) indicates
a more restrictive policy. Given the strong ties to one’s hukou city, we define origins o to be the hukou city.
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any differences in city level characteristics (correlated with a possibly endogenous hukou

index), that affect migrants and non-migrants similarly. Like before, we instrument for
pollution using thermal inversions.

Key parameters of interest are labor supply elasticities ηs for skilled and unskilled
workers. To estimate them, we need two instruments that shift labor demand curves and
trace out the supply curves. We construct shift-share instruments inspired by China’s
export-driven economic development and entry into the world trading system. Pierce and
Schott (2016) and Autor et al. (2013) study the effects of these shifts on US manufacturing
employment, but here we rely on the fact that it altered skilled and unskilled wages across
China (Erten and Leight, 2021; Facchini et al., 2019).

The first instrument, the NTR gap (Pierce and Schott, 2016), relies on changes to the
Normal Trade Relations (NTR) tariffs. Prior to joining the WTO, the US Congress needed
to continually renew the preferential NTR tariffs bestowed upon China. Joining the WTO
reduced the renewal uncertainty defined to be the difference between the non-NTR tariff
and the NTR tariff. Unlike Pierce and Schott (2016) who focus on effects in the US, we use
this instrument to study what happens to internal migration in China as real wages change
across cities following trade liberalization.

We create city-level uncertainty, measured by looking at the weighted sum of industry
i’s export shares EXdi in 1997, interacted with the industry-level NTR gaps:25

NT R IVud = ∑
i

EX1997
di

∑ j EX1997
d j

× (nonNTR tariffi −NTR tariffi) (16)

Comprehensive details about this trade shock can be found in Khanna et al. (2020), where
they show that the NTR instrument better predicts higher real unskilled wages, rather than
skilled wages, possibly as industries that benefited most from tariff changes were more
likely to hire unskilled labor. The underlying variation is the shock to tariff uncertainty
rather than city-structure (Borusyak et al., 2022). We use this as an instrument for unskilled
real wage log wud −νulog hpd , deflating wages by local house prices.26

For skilled wages we derive variation from the World Import Demand (WID) for skilled

25While the shift-share analysis is implicitly derived from a model of multiple sectors/industries, our sim-
plified baseline framework only has one final good for tractability.

26We use yearly average data on housing rents from the Xitai Real Estate Big Data depository.
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industries.27 Following Autor et al. (2013), we use WID shocks by industry, and weight
them by initial export shares to derive city-level shocks. Our industry-level shifters exclude
trade flows between China and the rest of the world, so as to account for unobservables re-
lated to productivity growth in China. To create an instrument for skilled-wage in equation
17 we use the share of skill-intensive industries:28

WIDsd = ∑
i

EX1997
sdi

∑ j EX1997
sd j

×
(

World IMi,2015 −World IMi,2004

World IMi,2004

)
(17)

Table 4 allows us to estimate ηs and γs for each skill group. Across the columns we
vary the skill groups and the instruments used. The skill-biased trade shocks will raise the
demand for some occupations more than others. This changes the wages by city and skill
group in response to the trade shocks, and helps us identify ηs, the labor supply response
to changes in wages. Our estimates in columns 1 and 3 suggest that ηu = 1.012 and ηh =

1.301. These are similar to estimates of labor supply elasticities estimated by Tombe and
Zhu (2019). As such, not using the instruments, and simply calibrating our model (as is
done in this literature), would produce similar counterfactuals.29

Equation 15 shows that the coefficients on Log(PM2.5)d equal ηsγs. The γs parameters
capture the marginal utility of clean air, and vary by skill. This determines the compensat-
ing differential for pollution. Given our estimates of ηs, we infer γh = 0.38, and γu = 0.042.
γh > γu implies that the skilled are more sensitive to air quality. Comparing estimated labor
supply elasticities with respect to wages and pollution levels suggests that both types of
workers are far more responsive to wages than they are to pollution.

Workers also respond to migration costs. Table 4 shows that migration is less likely
to occur over longer distances, and if there are more hukou restrictions. Skilled workers
are less sensitive to distance.They are more sensitive to hukou restrictions, even though
they face fewer restrictions. The responsiveness perhaps reflects stronger preferences for

27We label an industry as skill intensive if the share of skilled workers in the industry is above median
in the ISIC data. We construct our measure using the Indonesian manufacturing census (Amiti and Freund,
2010), to ensure no confounding effects of using the same sample to construct our measure and estimation.

28Khanna et al. (2020) perform many robustness checks surrounding these instruments. Recent develop-
ments in the shift-share literature discuss additional tests, such as tests for pre-trends, baseline share corre-
lations, and standard error corrections. Khanna et al. (2020) perform these tests, noting that we rely on the
assumption that in our case, the ‘shifters’ are exogenous (as in Borusyak et al. (2022)).

29In Tables D8, D9 and D10, we calibrate labor supply elasticities using parameter estimates from Tombe
and Zhu (2019). The results of our counterfactual exercises remain similar.
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Table 4: Estimating Labor Supply Elasticities

IV-2SLS Labor Supply Low Skill Workers High Skill Workers
Log πuod Log πhod

(1) (2) (3) (4)

Log(PM2.5)d -0.0427*** -0.0488*** -0.506*** -0.513***
(0.0090) (0.0114) (0.0958) (0.0829)

Log(Real Wage)d 1.012*** 1.126*** 1.301*** 1.024***
(0.269) (0.318) (0.251) (0.170)

Log(Distance)od -0.0754*** -0.0783*** -0.0308*** -0.0404***
(0.0112) (0.0129) (0.0052) (0.0046)

Hukou Indexsd ×Migrantod -0.923* -0.852* -3.489*** -3.061***
(0.487) (0.501) (0.876) (0.758)

Observations 13,570 13,570 13,570 13,570
Pollution IV No. thermal Strength thermal No. thermal Strength thermal
Wage IV NTR IV NTR IV WID IV WID IV
Controls Yes Yes Yes Yes
Hukou City FE Yes Yes Yes Yes
First stage F-stat 19.45 15.16 30.97 70.07

Note: Origin-destination pair level regressions across 118 origin cities and 115 destination cities for which
we have data from all sources including population Census, CLDS, hukou index data and trade data. The
measure of Hukou Indexsd varies across cities and skill level. We model distance as inverse hyperbolic
sine. All regressions also control for temperature, humidity, sunshine duration, and wind speed, as before
when using thermal inversions as an IV. Standard errors clustered at the hukou city level are reported in
parentheses. We report Kleibergen-Paap rk Wald F statistic. The first stage relationships are described in
Table C3. ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.

access to amenities (like housing purchases, medical services and children’s schooling)
only obtainable via accessing local hukou.30

6.3 Measuring Amenities and Productivities {θsd,αsd, Ād}
θsd varies at the city level by the amount of skill-biased capital in each city, and is

measured from data on labor shares in the wage bill and the properties of a CES function:

whdLhd

whdLhd +wudLud
=

θhdL
σE−1

σE
hd

θhdL
σE−1

σE
hd +(1−θhd)L

σE−1
σE

ud

(18)

302017 Migrant Population Data show 54% of high-skill workers, but only 35% of low-skill workers want
local hukou.
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We plot the city-level distribution of θhd in Figure C3. Beijing, Shanghai and large urban
centers have high amounts of high-skill capital than less urbanized, less developed areas.

We derive non-pollution amenities as a residual from the labor supply curve, equation
15 (Ahlfeldt et al., 2015; Bryan and Morten, 2019). We take the residual for each skill-
specific regression estimated from equation 15, and derive city-and-skill specific amenities
asd from destination fixed effects.

To quantify changes to output, we create a measure of TFP Ād , which captures features
of the local area (e.g., land quality). We follow the literature (Ahlfeldt et al., 2015) and

measure TFP as the city-level aggregate residual from output Yd = A
1
ρ

d

(
1−ρ

R∗

) 1−ρ

ρ

Ld . Using

our σE and θsd estimates, we can create a measure of Ld , and invert the model to derive A
1
ρ

d .

6.4 Estimating Agglomeration and Congestion Forces (φ and ψ)
We use equation 19 to study how our measure of TFP correlates with pollution as in-

strumented with the thermal inversions instrument for pollution.

1̂
ρ

logAd = log Ād +φ1 logZd +φ2 logLhd + ε3d , (19)

where φ1 is the elasticity of pollution with aggregate TFP. Notice, Ad may capture other
drivers of city-level TFP, like land, housing supply, innovation. Equation 19 also allows
the number of skilled workers to directly affect the amount of TFP in a city. If there are
innovation spillovers, it would be captured by the agglomeration elasticity φ2.31

In Table 5 we leverage our PM2.5 instruments and estimate φ1 = −0.082, which lies
in between the Chang et al. (2019) elasticity of −0.023 for call-center workers in China,
Adhvaryu et al. (2022) elasticity of -0.03 for assembly line workers in India, Chang et al.
(2016) elasticity of -0.059 for fruit packers in CA, and Kahn and Li (2019) elasticity of
−0.18 for public sector workers in China. Zivin and Neidell (2012) show productivity falls
for low skill agricultural workers in response to high ozone levels

We use a sudden university expansion to estimate the effects of skilled workers on TFP,
to capture the agglomeration or innovation spillovers. The Chinese government instituted
a policy to expand college enrollment in 1999, primarily by lowering the bar for admis-

31Agglomeration in this model is represented by the production of non-excludable ideas. Innovators are
not compensated for ideas in wages. Instead overall output increases, benefiting all in the economy.
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Table 5: Pollution, Population and TFP

Agglomeration Forces Congestion Forces
Log(TFP) Log(TFP) Log(PM2.5) Log(House Prices)

(1) (2) (3) (4)

Log(PM2.5)d -0.0816 -0.0595
(0.256) (0.285)

Log(Lhd) 0.0970* 0.0964*
(0.0528) (0.0519)

Log(Population)d 0.266* 0.259**
(0.150) (0.121)

Log(Lhd/Lud) -0.00781 0.423***
(0.0786) (0.0583)

Observations 121 121 121 121
Pollution IV No. Thermal Thermal Strength
First stage F-stat 25.61 15.67 12.66 12.66

Notes: We combine population census, CLDS data, and college expansion data, consistently available for
121 cities. The first column estimates the relationship between PM2.5, number of skilled workers and
TFP. We use thermal inversions as an instrument for PM2.5, and leverage the higher education expansion
instrument to identify the effect of the number of skilled workers. For congestion forces we use instru-
ments for population and the skill ratio that we describe in the text. We control for region fixed effects
and distance to seaports. When using thermal inversions as an instrument, we control for weather amenities
(temperature, humidity, sunshine duration and wind speed). We report Kleibergen-Paap rk Wald F statis-
tic. The first-stage relationships are in Table C3. Robustness for house-price regressions are in Table A19.
∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.

sion.32 Che and Zhang (2018) use this policy as an instrument for firm productivity, and
discuss identification concerns at length. We use this same instrument to predict variation
in the number of skilled workers across cities. Figure C2 describes this event. Importantly,
it shows no differential pre-trends in professors and college students (who subsequently
make up the skilled workforce) in cities that subsequently benefited from college expan-
sion. Furthermore, this instrument is not correlated with the pollution instruments either.

We create measures of the number of college graduates by city and year, and use the
change in graduates from 2001-05 (cohorts just before and after the university expansion
policy) as our instrument.33 We find φ2 = 0.097 when estimating equation 19, which sug-
gests meaningful agglomeration (Moretti, 2004; Peri et al., 2015).

32The Ministry of Education (MOE) expanded admissions by more than 40% in 1999-2000, and by about
20% over the next five years. The enrollment rate increased from 9.8% in 1998 to 24.2% in 2009. The year
2003 saw the first flow of graduates into the job market: a 46.2% increase from the previous year.

33The instrument is number of college graduates in city d in 2005 minus the number of college graduates
in city d in 2001. Figure C2 describes the dynamics of the expansion policy, and pre-trends.
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Our model allows for the spatial distribution of population to affect pollution (equation
5). We need estimates for how changes in the number of workers and skill share in each
city affect pollution and house prices. Estimating ψ1 requires variation in the skill-ratio
not driven by air quality. We leverage the college expansion policy (per baseline unskilled
population in 2000) to estimate the effect of changes in skill ratios.

Simultaneously, we estimate how changes in total population affect air quality, captured
by ψ2. We leverage exogenous push factors from the cities of origin that each destination
is linked to through migrant-networks at baseline. We instrument for population in each
destination d using the growth in emigration between 2005-15 from all provinces, weighted
by the share of migrants from each province that came to d in 2000:34

Population IVd,2015 = ∑
p

(
Migrantsd p,2000

∑d Migrantsd p,2000
×

(
∑

d′ ̸=d
Migrantsd′p,2005−2015

))
(20)

Note that this is different from the instruments in Card (2001); Jaeger et al. (2018). As
we have rich data on outflows of migrants from provinces, we can leverage ‘push factors’
from sending regions, and completely omit information on inflows into destinations. The
advantage is that identification relies on forces driving the outflows from provinces to all
other cities, and not associated with destination d.35

Table 5 describes the effect of population and skill ratio on pollution. The first stage of
the 2SLS appears to be strong (as in Table C3). Our two-staged least squares estimates tell
us that ψ1 is indistinguishable from zero, and ψ2 = 0.266. Larger population increases the
amount of pollution in a city, but the skill composition of workers has no detectable effect.

Finally, we consider how house prices may affect our predictions. We estimate the
elasticity of house prices with respect to population (ψ3 = 0.259),36 and with respect to
the skill ratio (ψ4 = 0.423), leveraging the same instruments. A larger population raises
house prices, and these prices rise substantially more with an influx of skilled workers.
Robustness checks are in Table A19.

34When calculating the amount of out-migration between 2005 and 2015, we exclude flows to d, so as to
not capture labor demand changes at the destination.

35We combine this idea with the strength of the Card (2001) framework, in which sources of migration
at baseline determine migrant networks which attract migrants into city d after 2005, whenever there are
larger outflows from the origin provinces that d was connected to. Before 2000 internal migration was highly
regulated (Kinnan et al., 2018). After 2000, migration costs have fallen substantially (Tombe and Zhu, 2019).

36This elasticity is similar to Liang et al. (2020) who find an elasticiy of 0.21 for coastal Chinese cities.
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Table 6: Summary of Estimated Model Parameters

Parameter Value Definition Identifying Variation

σE 1.24 Skill-elasticity of substitution Pollution-driven geographic sorting
Relative labor demand elasticity Changes in skill ratio affect wages

ηh 1.301 High-skill labor supply elasticity World Import Demand trade shocks
ηu 1.012 Low-skill labor supply elasticity NTR Gap trade shocks post WTO
γh 0.506 High-skill migration response to pollution Pollution-driven response by skill
γu 0.0427 Low-skill migration response to pollution Pollution-driven response by skill
θhd [0.10,0.73] Skill-specific productivity Skill-labor share in wage bill

ψ1 -0.008 Pollution response to changing skill ratio University expansion
ψ2 0.266 Pollution response to population Out-migration from origin provinces
ψ3 0.259 House price response to population Out-migration from origin provinces
ψ4 0.423 House price response to skill ratio University expansion
φ1 -0.0816 TFP response to pollution Pollution IV affect TFP residual
φ2 0.0970 TFP response to skilled workers University expansion
λh 3.489 High skill response to hukou index Skill-biased hukou index
λu 0.923 Low skill response to hukou index Skill-biased hukou index

Notes: We summarize the parameter estimation using different instruments in this table. The values are from
Tables 3-5 and Figure C3. The top half of our table lists the primary parameters for our main model. The
lower half of the table includes the additional parameters that complete the estimation process.

6.5 Model Solution and Validation Exercises
Table 6 summarizes parameter values and sources of variation. In addition, we calibrate

the housing expenditure shares vs = 0.159 and vu = 0.182 from the China Urban Household
Survey. Output in city d depends on the set of parameters: {θsd,σE ,η ,φ1,φ2,ψ1,ψ2,ψ3,ψ4},
a set of ‘endogenous’ quantities: {Yd,Ad,Lhd,Lud,Kd,Zd}, and ‘exogenous’ quantities:
{Ād, Z̄d,Msod, L̄u, L̄h}. Prices, {whd,wud,hpd} are determined in equilibrium, with the out-
put being the numeraire. R∗ is exogenous to the framework. Changes in exogenous pollu-
tion Z̄d will affect the location of workers and TFP, thereby changing output Yd in this city,
and in other cities. Given our estimated set of parameters and exogenous quantities, we
create model-predicted measures of endogenous quantities, like GDP and wages.

We solve the model starting with a list of parameters and exogenous quantities, and
a set of initial conditions for endogenous variables. After estimating the parameters and
exogenous quantities, we no longer use data to solve the model. The market clearing con-
dition is the labor market equilibrium. We iteratively vary the starting value by 20% for
each endogenous variable. The model converges to the same unique equilibrium.37 Our

37This does not necessarily imply the equilibrium is globally unique. The existence of multiple equilibria
often depends on the relative strength of agglomeration and congestion forces (Allen et al., 2020). Given the
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algorithm clears the labor market. If there is an excess supply of labor in a city, wages fall,
and our model converges to an equilibrium.

We test for model fit in Figure C4, and show that our model’s predictions match en-
dogenous quantities in the data. We test model-fit for predicted Log(GDP), skill-premia
Log(wh/wu), Log(Lh/Lu) and Lh. These are not necessarily out-of-sample tests as we use
the data when estimating the model parameters, but not when solving for equilibrium which
includes residuals. Across all measures, our model replicates the major spatial patterns. In
Figure C5 we perform out-of-sample tests using “new” data on distance of migrant flows,
and in Figure C6 we validate our measures of TFP and amenities by showing strong cor-
relations with independent measures (for TFP we document correlations with patenting,
R&D expenditure and workers, and universities).

7 Counterfactuals: The Gains from Relocating Pollution
There are three ways through which pollution result in productivity losses. First, and

the one this paper seeks to highlight, skilled workers leave cities where they would be more
productive. Further, since the (complementary) unskilled do not leave with the skilled, this
creates a mismatch, further reducing aggregate productivity. Second, pollution reduces
the agglomeration of skilled workers in productive cities. Third, pollution directly affects
workers’ health and lowers productivity.

In this section, we use our estimated model to conduct counterfactual exercises to quan-
tify how large an effect pollution control policies would have on productivity via each of
these three mechanisms. To isolate the health channel, we prohibit workers from chang-
ing location when pollution levels change: Without worker mobility, there is no sort-
ing/complementarity effects nor agglomeration effects. To shut down agglomeration, we
set φ2 = 0 in the TFP relationship.

There are two types of pollution control policies we consider in our counterfactuals.
First, we change only the steady-state level of pollution Zd in a city. This is similar to
policies where cities are assigned explicit pollution targets they must meet, regardless of
how (investing in greener technology or industrial scrubbers). In the second policy, we
relocate the exogenous component of pollution only, Z̄d . This is similar to relocating coal-
fired plants from up- to downwind regions, or targeting green investments to upwind plants.

meaningful congestion forces here, we may expect a unique equilibrium.
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Relocating plants would induce new residents to move in, change production, and a revised
pollution level will emerge that will not necessarily equal the initial change in Z̄d .

Relocating plants away from high-capital cities to low-capital cities, will benefit certain
cities but hurt others. Even though the relocation may improve aggregate productivity,
the distributional effects are more complex.38 These policies may not be costless: our
quantified benefits inform policy given any known menu of costs.

7.1 Changing Pollution in One City: Beijing
Table 7 describes the effects of changes to pollution and migration policy in a highly

productive and polluted city, Beijing. We first reduce steady state PM2.5 by 50%, a policy
akin to setting a pollution cap for Beijing. This raises GDP per worker in Beijing by
14.4%. The health channel raises productivity by 5.8%. The pure relocation channel (not
accounting for agglomeration) raises incomes by 4.5%. If we allow for skilled workers
to drive agglomeration spillovers, GDP per worker due to relocation would rise by 8.1%.
Productivity gains through the indirect spatial sorting channel are larger than the direct
health benefits of air quality improvement. The overall improvements to GDP are not
merely the sum of the channels, as they meaningfully interact with each other.

Second, we examine the effects of reducing the exogenous component of PM2.5, allow-
ing steady state values of pollution to adjust when city population and skill composition
change. This policy is similar to relocating a power plant upwind of Beijing to elsewhere.
Here we obtain similar, albeit slightly smaller, effects on GDP per worker and wages. The
mildly muted effects reflect the fact that when exogenous pollution is reduced, an influx
of workers may increase pollution and mitigate some gains. Again, relocation effects are
larger in magnitude than the direct health benefits.

In the third and fourth rows of Table 7, we examine the effects of relaxing hukou re-
strictions in Beijing by 50%, but holding pollution fixed. When we relax the skilled hukou,
GDP per worker rises by 8.2%, more than half of which is driven by the relocation chan-
nel, and the rest by agglomeration. Lowering unskilled hukou restrictions lowers GDP per
capita, through a compositional change in population – there are now more low-wage work-

38While we study outcomes in equilibrium steady states, the movement of individuals may evolve dynam-
ically over time (Heblich et al., 2021). To be consistent with our steady-state approach, our primary source of
pollution variation relies on mostly cross-sectional variation (based on the placement of power plants). Yet,
our results are consistent when using more dynamic variation derived from thermal inversions over time.
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Table 7: The Productivity Effect of Reducing Pollution in One City

Change in GDP per Worker in Beijing (%)
Overall Change Health Channel Relocation Relocation+Agglom

(1) (2) (3) (4)

Reduce steady state PM2.5 14.370 5.819 4.480 8.080
Reduce exogenous part of PM2.5 12.773 5.344 3.777 7.052
Relax skilled hukou 8.174 0.000 5.109 8.174
Relax unskilled hukou -3.775 0.000 -4.686 -3.775
Reduce PM2.5 & relax skilled hukou 22.959 5.819 9.147 16.197
Reduce PM2.5 & relax unskilled hukou 10.533 5.819 0.036 4.454

Notes: In this counterfactual exercise we reduce the steady state amount of pollution in Beijing by 50% (row
1). We then reduce only the exogenous component of pollution by 50% (row 2). Next, we lower hukou
restrictions for each skill level (rows 3 and 4) by 50%, keeping pollution fixed. Rows 5 and 6 lower the
hukou regulations by 50% while reducing steady state pollution. Column 1 shows the gain to overall GDP
per worker. Column 2 shows the component purely explained by the health-productivity channel. Column 3
shows the pure relocation channel, and Column 4 also incorporates agglomeration as a consequence of
relocation. Table D1 shows effects on nearby cities, and Table D1 shows effects of the simplest model
without any externalities.

ers in Beijing. The last two rows combine the changes in steady-state pollution and hukou

restrictions. Combining pollution abatement and relaxing the skilled hukou, GDP increases
by 9.2% due to reallocation of workers, and 16.2% when including the agglomeration of
skilled work. These are much larger than the direct health benefits of clean air, 5.8%.39

Relocation affects productivity and wages in the model through multiple channels.
First, immigration changes the skill composition of the city population. Average incomes
rise if skilled workers move in. Second, the effect of skilled workers on city productivity is
larger when the city (like Beijing) has a lot of skill-biased capital. Third, inflow of skilled
workers lowers the skilled wage due to a labor supply effect. However, that raises unskilled
wages because the unskilled are estimated to be fairly complementary in production. Fi-
nally, agglomeration forces will raise average incomes for all skill groups. When hukou

relaxation is combined with pollution reduction, the consequent skilled immigration raises
average incomes substantially.

We move beyond overall GDP per capita to examine distributional consequences on the
wages of each skill group in Table D2. When we reduce the steady state amount of pollution
in row 1, skilled wages rise slightly. The improved productivity of skilled workers from

39Panel A in Appendix Table D1 examines changes to GDP per worker, focusing solely on the main
relocation effects and shutting down agglomeration or congestion effects.
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reduced pollution is counteracted by the reduction in wages as a consequence of an influx
of skilled workers. Unskilled wages, on the other hand, rise sharply by 18.3%. Most of this
is driven by the relocation channel: When skilled workers enter Beijing, complementary
unskilled workers become more productive. As a consequence, average wages in the city
rise by 14.4% (i.e., the increase we saw in GDP per worker in Table 7). Reducing the
exogenous part of pollution (row 2) produces similar distributional effects.

When we relax the hukou restrictions in rows 3 and 4 in each skill group, we see that
allowing in more workers of a particular skill group lower the wages of that group, while
raising the productivity of the other (complementary) worker type. When we combine re-
laxing hukou regulations with changes to PM2.5, there are more positive effects on wages,
especially for the unskilled. Panel B in Table D1 shows effects on nearby cities.

7.2 Relocating Pollution Away from Skill-biased Capital
Table 8 considers a different type of counterfactual where we keep the overall levels of

pollution in the country to be the same, but simply relocate pollution from regions that have
more skill-biased capital (high θhd) to regions with less skill-biased capital. This could, for
instance, entail relocating coal-fired plants away from technology hubs, financial centers,
and nodes of professional service activities. Spatial reorientation of coal processing is
perhaps more feasible than reducing nationwide production and pollution in the aggregate.
In the first row, we relocate steady state pollution by setting pollution caps based on the
amount of skill-biased capital in the city. Overall GDP in the country increases by 6.7%,
and a substantial proportion of this increase is driven by the relocation of workers. The
contribution of the health channel is a 2.6% increase in GDP, while the relocation channel
alone raises GDP by 2.2%. Agglomeration plays a minor role.

When we relocate the exogenous part of pollution (say, shift an upwind plant away
from a productive city, to a less productive one), the GDP increase is smaller. As people
relocate to the more productive cities, pollution levels again rise through the feedback loop
in the model (where pollution is a function of population), and dampens the benefits. The
contribution of the relocation channel is slightly larger than the health channel.40

As a benchmark, in row 3, we relax hukou restrictions in the top-tier cities by 50%.
This raises GDP by less than the pollution changes, but, by construction, is solely driven

40The health channel playing a positive role suggests that sources of pollution are concentrated in more
populous cities. Moving pollution away from large cities can improve population-weighted average health.
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Table 8: The Productivity Effect of Relocating Pollution Across Cities

Change in GDP per Worker in China (%)
Overall changes Health Relocation Relocate+Agglom

(1) (2) (3) (4)

Relocate steady state PM2.5 6.702 2.604 2.205 2.277
Relocate exogenous part of PM2.5 3.670 1.484 1.563 1.615
Relax hukou 2.585 0.000 2.340 2.585
Relax overall mobility constraints 6.968 0.000 6.421 6.968
Relocate PM2.5 & relax hukou 8.329 2.604 3.615 3.844
Relocate PM2.5 & lower migration costs 13.832 2.604 8.156 8.814

Notes: In this counterfactual exercise we relocate PM2.5 in all cities based on the amount of skill-biased
capital in the city (row 1). In row 2, we relocate only the exogenous component of pollution. In row 3, we
relax hukou restrictions in the 24 top tier cities by 50%, keeping pollution fixed. In row 4 we relax overall
migration costs to the 24 top tier cities by 50%, keeping pollution fixed. Column 1 shows overall gains to
GDP. Column 2 shows the GDP increase as a consequence of health effects only. Column 3 shows gains due
to the re-allocation of labor only. Column 4 shows the gain to GDP accounting for changes in TFP due to
changes in re-location and the agglomeration of skilled workers. Table D3 shows results for the simplest
model focusing on relocation, and no externalities.

by worker relocation. When we lower overall migration costs in these top-tier cities (row 4)
by 50%, the increase in GDP is similar to relocating steady state pollution (about 6.97%).
Lowering overall migration costs can be thought of as a policy mix of relaxing hukou

restrictions and building more transportation infrastructure to connect cities. Combining
reductions to mobility costs to top-tier cities with relocating pollution produces much larger
effects on GDP per worker.41.

The major lessons are: (a) A spatial reallocation of pollution away from cities that have
greater potential for skilled productivity (those with most skill-biased capital) can raise
national income as skilled workers relocate to where they are most productive, (b) Pollution
caps produce larger productivity effects than relocating sources of pollution, as worker re-
sorting undermines benefits, and (c) Combining relaxations to mobility restrictions with
pollution reductions produce large income gains.

Table D4 shows wage effects. Relocating pollution away from cities with more skill-
biased capital raises skilled wages, but has little effect on unskilled wages. This is a conse-
quence of the baseline distribution of skill groups across cities that see pollution changes.

41In Appendix Table D3, we re-examine the overall changes to GDP from our most basic formulation of
the model, without externalities. That is, without housing, agglomeration, or pollution responses. The results
are qualitatively similar to Table 8
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As skilled workers relocate to cities with more skill-biased capital, their overall productiv-
ity increases, as there is now a better matching of workers to capital. Skilled workers who
were already resident in such cities may see a dampening of their wages, but could also
benefit from agglomeration economies. On net, we find that skilled wages rise by 17.7%,
and the relocation channel raises skilled wages by 10.5%. The health channel also raises
skilled wages, as skilled workers already tend to locate in high skill-biased capital cities
which now saw a reduction in pollution.

Relaxing hukou restrictions and lower migration costs (rows 3 and 4) raise wages for
both skilled and unskilled, as workers match better with where their marginal products are
higher. The combination of lowering migration costs and relocating pollution (row 6) raises
skilled wages by as much as 27.8% and unskilled wages by 6.7%, almost entirely due to
changes in internal migration patterns.

However, wage effects do not capture the entirety of the welfare consequences, as pol-
lution and migration costs also determine welfare. This is particularly important to ac-
knowledge, as relocating pollution to less productive areas may be undesirable from an
environmental justice point of view, if it makes unskilled workers in poor cities worse off.
Table D5 examines changes to welfare by skill (as defined in equation E.6). Relocating
pollution away from cities with skill-biased capital raises the welfare of skilled workers by
29.7%, as it raises their wages and lowers their pollution experience as most skilled workers
are already located in such cities. Unskilled workers, however, see modest improvements
in overall welfare. National welfare improves by 4.6%.

Lowering migration costs (row 4) raises the welfare of both the skilled and unskilled
by 17.5% and 10.1% respectively. The combination of relocating pollution and lowering
migration costs improves country welfare by 16.9%. The overall changes in welfare are not
simply the sum of the two counterfactuals, highlighting the interplay between migration
restrictions and pollution exposure. Relaxing migration restrictions improves welfare by
lowering mobility costs and allowing access to high wages; but when combined with lower
pollution, the in-migrants also benefit from air quality.

The numbers in Table D5 make clear that while relocating pollution is sensible on
efficiency grounds, they raise welfare by benefiting skilled workers. Unskilled workers are
also better off, but their gains are only substantial when reducing overall mobility costs.
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7.3 How Much of the Cross-city Wage Gap is Due to Pollution?

Figure 8: Explaining the Wage Gap with Worker Relocation

Notes: We plot the change in the skilled wage, solely due to changes in worker location (the relocation
channel only), when the amount of pollution in the city is changed to be that in the median city. The horizontal
axis plots the baseline amount of pollution in a city. The vertical axis plots the change in the skilled wage as
pollution is equalized across cities. The size of the bubbles represent the baseline population in 2000.

A persistent puzzle animating a large literature in development and macroeconomics
is that despite existent productivity gaps across regions, worker mobility does not equalize
wages. We use our estimated model to explore: how much of the cross-city wage gaps is
explained by poor air quality?

We conduct an exercise where we change the amount of pollution in all cities to be
that of the median city in the country, while still keeping the total country’s pollution the
same as before. This means raising pollution levels in low pollution and low skill-biased-
capital cities, and lowering them in polluted, productive cities. In Figure 8, we show how
wages change, to quantify how much of the wage gap across cities is due to existing pat-
terns of pollution. For instance, Tianjin and Chongqing are two comparable representative
provincial-level cities: As pollution is lowered in Tianjin, there is an inflow of workers that
lowers wages. The change in wage is the same as the (endogenously determined) compen-
sating differential. Conversely, wages rise in Chongqing as workers emigrate out. On net,
the skilled wage gap between Tianjin and Chongqing is bridged by 18%, due only to the
pollution-induced reallocation channel. Once we incorporate the health and agglomeration
benefits of reducing pollution, a smaller, 14.4% of the gap gets bridged.
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7.4 Consequences of the 2013 City-level Pollution Caps
Finally, we quantify the productivity implications of an actual pollution control policy

recently implemented by the Chinese government. On Sep 10, 2013, the State Council of
China issued an Air Pollution Prevention and Control Plan, which states, “by 2017, an-
nual PM2.5 concentration in China’s three major economic circles: Beijing-Tianjin-Hebei,
Yangtze River Delta and Pearl River Delta region shall fall by around 25%, 20% and 15%
respectively. PM2.5 concentration in Beijing shall be controlled below 60 µg/m3.” This
plan sensibly targeted China’s three most productive areas.

Table 9: The Productivity Effect of Pollution Regulation

Change in GDP per Worker in China (%)
Overall changes Health Relocation Relocate+Agglom

(1) (2) (3) (4)

Control PM2.5 3.570 1.519 1.702 1.937
Control PM2.5 & relax hukou 6.300 1.519 4.064 4.570
Control PM2.5 & lower migration costs 10.773 1.519 8.157 8.974

Notes: In this counterfactual we reduce pollution according to the targets set by the 2013 Air Pollution
Prevention and Control Plan (row 1). In addition to pollution regulations, we also relax the hukou restriction
in high-tier cities (row 2), and overall migration costs (row 3) by 50%. Column 1 shows the gain to country
GDP. Column 2 shows the GDP gain from the health-productivity channel. Column 3 shows the GDP
change from relocation, and Column 4 also accounts for agglomeration. We examine how this policy affects
wages of workers in Table D6 and their welfare in Table D7.

As shown in Table 9, we predict this policy – targeted at only a subset of cities – to
increase country-level GDP by 3.6%, mostly driven by workers relocating to more produc-
tive cities. While this is already impressive, our model further suggests that if China were
to lower migration costs to allow its citizens to take full advantage of the new pollution
controls in productive cities, GDP per worker would rise even more, by as much as 10.8%.

Our analysis suggests that while pollution control is important, ignoring the spatial re-
sorting effects of pollution control leaves large bills on the sidewalk. Given how sensitive
(skilled) Chinese citizens are to pollution and migration costs, our model clarifies that pair-
ing pollution control with easing hukou restrictions could produce large benefits to society.
Table D7 shows that a combined policy of both pollution control and easing mobility would
also make the welfare gains more equitable (as in equation E.6). The 2013 pollution-caps
policy raised skilled welfare by 7.2%, but have little effect on the unskilled, who are less
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pollution-sensitive. However, lowering migration costs as a complementary policy would
improve welfare for both the skilled and unskilled.

8 Conclusion
Our analysis highlights the macroeconomic consequences of an important new pattern

of mobility, and proposes a new channel through which pollution adversely affects ag-
gregate productivity. As economies grow and industrial activity pollutes the environment,
workers – especially those who are more educated and skilled – emigrate in search of bet-
ter air quality. Not only is this costly for the polluted cities that skilled workers leave,
this process lowers productivity and aggregate economic growth by creating a spatial mis-
match between skilled and unskilled workers, and by inducing skilled workers to move out
of areas where they would contribute more to the economy. Other work documents that
pollution lowers productivity by making workers unhealthy (Adhvaryu et al., 2022; Kahn
and Li, 2019; Zivin and Neidell, 2012), and our contribution is to quantify the productiv-
ity losses stemming from differential mobility of skilled workers in response to pollution,
which we find to be just as important as the pollution-health effects. We further document
that mobility costs (both physical, and via hukou policy) exacerbate these economic losses,
and that migration and pollution-control policies are interlinked. This evidence directly
speaks to tensions between environmental regulation and urbanization in the developing
world (Balboni, 2021; Glaeser, 2014b).

Finally, our analysis sheds light on an important puzzle in the development and macroe-
conomics literature: Why are there large productivity gaps across regions within countries
(Bryan and Morten, 2019; Gollin et al., 2014), and why don’t workers move to arbitrage the
gaps (Bryan et al., 2014; Heise and Porzio, 2021)? Understanding factors that prevent effi-
cient allocations of inputs is consequential for our understanding of aggregate productivity
and growth (Hsieh and Klenow, 2009). We find that distaste for pollution accounts for 14%
of the wage difference across representative pairs of cities. While most commentators fear
that pollution control policies hurt firm performance, we show that such policies has the
potential to bring about large productivity gains in China.
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A Robustness of Empirical Specifications
We conduct a wide-range of meaningful robustness checks to evaluate the concreteness

of the empirical relationship between air quality and migration. We explore threats to
identification, different instruments, alternate model specifications and data.

A.1 The Different Instruments and their Sources of Variation
Here we explore threats to identification for our instruments. We test concerns of the

endogenous placements of power plants, whereby policy makers may use the same function
– the simultaneous interaction between wind directions, distance to a given city and coal
consumption – to determine where to place new plants. We thus exclude any plants built
within different distance radii around the city. We may still think that newly built plants
are endogenously placed. Yet, our results are robust to relying on old power plants, and
to make it even more conservative the cities near the newly built plants are in the ‘control’
group. Last, we show that the IV is not predicted by baseline city-level characteristics.

We also explore the variation underlying the thermal inversions IV. We fail to find mean-
ingful predictors of future inversions, and as such conclude that such events are random.
Finally, we explore the variation generated by China’s Huai river heating policy (Chen
et al., 2013). Even though we fail to find substantial effects on out-migration rates, they do
help predict differential in-migration by skill.

A.1.1 Instrumental Variable Estimates

In Table A1 we show the strength of the first stage relationships between our different
instruments and our independent variable of interest.

In the first three columns of Table A2, we estimate a stacked regression analogue of
Table 1, where we include an interaction term between pollution and high-skill indicators
(and a control for the high-skilled indicator). Here, we instrument for pollution, and also
for the interaction between pollution and high-skilled (using the interaction between the
instrument and the high-skilled indicator). The results indicate that pollution increases
emigration, and this effect is larger for the high-skilled.

In the next three columns of of Table A2, we look at different ways to reformulate the
estimation sample. Instead of splitting up the sample into low and high skilled, we split
it up into three categories: high school or below, those with some college education, and
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Table A1: The First Stage Across Different Instruments

Panel A: City-level Dependent variable: Log (PM2.5)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Wind+Coal IV 0.0240*** 0.0113*** 0.00956***
(0.00211) (0.00235) (0.00239)

Number of inversions 0.00222*** 0.00159*** 0.00201***
(0.000350) (0.000329) (0.000293)

Strength of inversions 0.000730*** 0.000448** 0.000725***
(0.000214) (0.000185) (0.000168)

Observations 332 332 332 332 332 332 332 332 332
R-squared 0.297 0.394 0.444 0.212 0.441 0.538 0.097 0.389 0.483
City Controls No Yes Yes No Yes Yes No Yes Yes
Weather Controls No No Yes No No Yes No No Yes

Panel B: Individual-level Dependent variable: Log (PM2.5)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Wind+Coal IV 0.0200*** 0.0136*** 0.0130***
(0.00191) (0.00188) (0.00189)

Number of inversions 0.00212*** 0.00184*** 0.00227***
(0.000285) (0.000254) (0.000224)

Strength of inversions 0.000822*** 0.000670*** 0.000944***
(0.000165) (0.000151) (0.000132)

Observations 761,548 761,548 761,548 761,548 761,548 761,548 761,548 761,548 761,548
R-squared 0.284 0.403 0.447 0.248 0.441 0.551 0.160 0.379 0.491
City Controls No Yes Yes No Yes Yes No Yes Yes
Demographics No Yes Yes No Yes Yes No Yes Yes
Weather Controls No No Yes No No Yes No No Yes

Notes: City-level regressions of 332 cities in Panel A and individual-level regressions across 332 cities in
Panel B. Panel A shows the first-stage results for city-level IV regressions and Panel B shows the first-stage
results for individual-level IV regressions. Standard errors clustered at the hukou city level are reported in
parentheses. City controls include distance to Shanghai, Tianjin and Shenzhen seaports. Weather controls
include temperature, wind speed, sunshine duration and humidity.

those with college or above education. A steep education gradient is apparent, where the
elasticity of migration with respect to PM2.5 is higher for higher levels of education.

Finally, Table A3 shows similar results using the combinations of the Wind IV and
thermal inversions instruments, and the corresponding over-identification tests.

We further examine the association between pollution and destination choices. We
regress city-level in-migration on local pollution concentration, and use our instruments
to deal with the endogeneity of air quality in destination cities. In Table A4 we find that
even for in-migration decisions, the response of high-skilled workers is greater than that of
low-skilled workers. In other words, high-skilled workers are more likely to move to cities
with clean air when they make location choices. Severe air pollution not only results in the
outflow of high-skilled workers but also reduce their inflow.

A2



Table A2: Stacked Regressions and Disaggregated Skill Levels

Leave hukou city indicator
(1) (2) (3) (4) (5) (6)

Stacked Regressions (with High-skill interaction) Disaggregated Education Levels
Full sample Full sample Full sample High school or below Some college College or above

Wind IV Thermal Num Thermal Strength Wind IV

Log(PM2.5) 0.0751* 0.0845*** 0.0704*** 0.0609 0.116*** 0.176***
(0.0388) (0.0203) (0.0230) (0.0423) (0.0401) (0.0409)

Log(PM2.5) × High-skill 0.0622** 0.0810** 0.110**
(0.0251) (0.0376) (0.0528)

Observations 761,548 761,548 761,548 643,124 64,598 53,826
City Controls Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes
Weather Controls No Yes Yes No No No

Notes: Individual level regressions across 332 cities. Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
using the interaction between wind direction, distance to coal plant, and coal consumption at power plant (in
column 1 and columns 4-6), and using the number of thermal inversions (in column 2) and the strength of
thermal inversions (in column 3). We also control for a high-skilled indicator in column 1-3. City controls
include distance to Shanghai, Tianjin and Shenzhen seaports. Demographics include age, age-squared,
gender, marital status, and an urban hukou indicator. Weather controls include temperature, wind speed,
sunshine duration and humidity.

Table A3: Combined Instruments

Dependent variable: Leave hukou city indicator
Wind and Coal +Number of inversions Wind and Coal +Strength of inversions
Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6)

Log (PM2.5) 0.0892*** 0.0836*** 0.124*** 0.0795*** 0.0722*** 0.129***
(0.0189) (0.0197) (0.0228) (0.0206) (0.0213) (0.0263)

Observations 761,548 643,124 118,424 761,548 643,124 118,424
Hansen J statistic 0.063 0.407 2.162 0.03 0.041 2.194
Hansen P value 0.802 0.523 0.142 0.862 0.839 0.139
City Controls Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes Yes
F-test of IVs 68.36 65.18 54.29 45.91 43.23 36.66

Notes: Individual level regressions across 332 cities. Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. City controls include the log
distance to Shanghai seaport, to Tianjin seaport, and to Shenzhen seaport. Demographics include age,
age-squared, gender, marital status, and an urban hukou indicator. Weather controls include temperature,
wind speed, sunshine duration and humidity.
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Table A4: Pollution and In-migration

Panel A Dependent variable: Share of In-migrants

No weather Wind+Coal IV Number of inversions Strength of inversions
Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) -1.856*** -1.853*** -2.259*** -1.204** -1.137** -1.645** -1.404** -1.275** -2.152**
(0.529) (0.520) (0.716) (0.500) (0.475) (0.677) (0.643) (0.606) (0.903)

Observations 329 329 329 329 329 329 329 329 329
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather Controls No No No No No No No No No
F-test of IVs 41.91 41.91 41.91 39.56 39.56 39.56 16.36 16.36 16.36

Panel B Dependent variable: Share of In-migrants

Weather controls Wind+Coal IV Number of inversions Strength of inversions
Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) -1.833*** -1.825*** -2.266*** -1.204*** -1.181*** -1.451*** -1.359*** -1.301*** -1.794***
(0.529) (0.513) (0.728) (0.373) (0.357) (0.503) (0.421) (0.401) (0.583)

Observations 329 329 329 329 329 329 329 329 329
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 33.81 33.81 33.81 91.64 91.64 91.64 47.63 47.63 47.63

Notes: City level regressions of 329 cities. We drop cities with missing in-migration rates. Dependent
variable is the log share of in-migrants in city population. Independent variable is destination city PM2.5.
Standard errors clustered at the hukou city level are reported in parentheses. We report Kleibergen-Paap rk
Wald F statistic. Instrumental variables specification using the interaction between wind direction, distance
to coal plant, and coal consumption at power plant, and using the number of thermal inversions and the
strength of thermal inversions. City controls include distance to Shanghai, Tianjin and Shenzhen seaports.
Demographics include age, age-squared, gender, marital status, and an urban hukou indicator. In Panel B,
weather controls include temperature, wind speed, sunshine duration and humidity.

A.1.2 Endogeneity Concerns over Instrumental Strategies

In this section we test certain identification assumptions. Our first instrument is the
interaction between the three components: wind direction, distance and coal consumption.
We may expect that policy makers take these components into account when placing large
coal-fired plants near certain type of cities, and so the instrument may be correlated with
unobservable characteristics of nearby cities. In Table A5, we exclude any plants built
within 200km of a given city (first two columns), and then within 400km of the city (last
two columns). Our results are similar to before, with an increase in precision.

We may expect that newly built plants are subject to more scrutiny as the conversa-
tion about air quality in China has recently escalated. In Table A6 we exclude newly built
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Table A5: Different Distance Bins for Selection of Plants

Dependent variable: Leave hukou city indicator
Distance 200-600km Distance 400-800km

Full sample Low edu High edu Full sample Low edu High edu
(1) (2) (3) (4) (5) (6)

Log (PM2.5) 0.0947*** 0.0798** 0.163*** 0.0973*** 0.0834*** 0.168***
(0.0365) (0.0396) (0.0383) (0.0304) (0.0319) (0.0385)

Observations 761,548 643,124 118,424 761,548 643,124 118,424
City Controls Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes
F-test of IVs 56.73 50.95 43.11 59.73 53.08 58.44

Notes: Individual level regressions across 332 cities. Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
based on the interaction between wind direction, distance to coal plant, and coal consumption of power
plant. City controls include distance to Shanghai, Tianjin and Shenzhen seaports. Demographics include
age, age-squared, gender, marital status, and an urban hukou indicator.

plants from the IV, and instead include cities with newly built ones in the ‘control’ group.
Although this empirical strategy is more conservative, we find similar patterns and magni-
tudes.

As the IV is constructed using the interaction between wind direction, distance to coal
plants and the capacity of plants, it is natural to ask which of the three components drives
our results. In Table A7, we control for the distance between each city and power plants
with little affect on our empirical pattern. In Table A8 we try different versions of the
instrument in which we exclude each of the three components, respectively. Our results
hardly change when we exclude distance to coal plant and coal consumption. In contrast,
the coefficient estimates of air pollution become meaningfully smaller when we exclude
the component of wind direction, indicating that our main IV results are primarily driven
by the variation in wind direction across locations. Wind direction is determined by nature
and is stable over long periods of time, thus it can be considered as exogenous to local
economies.

One concern with the exogeneity of wind direction is that the Chinese government
might select thermal plant locations in a way that pollution did not travel to populated or
politically important cities. If that were the case, coal-fired plants are less likely to be
located upwind of such cities. In Table A9, we present the number of large-scale thermal
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Table A6: Excluding Newly Built Power Plants

Dependent variable: Leave hukou city indicator
Plants > 5 yrs ago Plants > 10 yrs ago Plants > 15 yrs ago Plants > 20 yrs ago

Low edu High edu Low edu High edu Low edu High edu Low edu High edu
(1) (2) (3) (4) (5) (6) (7) (8)

Log (PM2.5) 0.0611 0.138*** 0.0761* 0.146*** 0.0762* 0.150*** 0.0992** 0.156***
(0.0421) (0.0379) (0.0451) (0.0412) (0.0432) (0.0401) (0.0469) (0.0398)

Observations 643,124 118,424 643,124 118,424 643,124 118,424 643,124 118,424
City Controls Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 44.39 40.57 33.08 34.42 35.28 42.99 30.87 38.36

Notes: Individual level regressions across 332 cities. Cities affected by new plants included in sample (i.e.
in the ‘control’ regions) so as to generate conservative estimates.Standard errors clustered at the hukou city
level are reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables
specification using the interaction between wind direction, distance to coal plant, and coal consumption at
power plant. City controls include the log distance to Shanghai seaport to Tianjin seaport and to Shenzhen
seaport. Demographics include age, age-squared, gender, marital status, and an urban hukou indicator.

Table A7: Controlling for Distance to Cities

Full sample Low edu High edu
(1) (2) (3)

Log(PM 2.5) 0.0700* 0.0541 0.133***
(0.0394) (0.0429) (0.0373)

Observations 750,822 633,288 117,534
R-squared 0.029 0.03 0.04
City Controls Yes Yes Yes
Demographics Yes Yes Yes
F-Test of IVs 57.24 51 42.83

Notes: Individual level regressions across 332 cities. Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
based on the interaction between wind direction, distance to coal plant, and coal consumption of power
plant. City controls include distance to Shanghai, Tianjin and Shenzhen seaports. Demographics include
age, age-squared, gender, marital status, and an urban hukou indicator. We control for the average distance
between each city and power plants located within 500 km of the city.

plants located upwind of five largest metropolitan areas in 2014 along with their total coal
consumption. Beijing and Tianjin are among the most populated and politically important
cities in Northern China. The ratio of the upwind large thermal plants to the total number of
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Table A8: Decomposing the Wind Direction IV

Dependent variable: Leave hukou city indicator
IV:Excluding distance IV:Excluding coal consumption IV:Excluding wind direction

Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) 0.0943** 0.0785* 0.163*** 0.0905** 0.0765** 0.144*** 0.0360 0.0199 0.0911***
(0.0392) (0.0424) (0.0392) (0.0358) (0.0385) (0.0350) (0.0343) (0.0378) (0.0330)

Observations 761,548 643,124 118,424 761,548 643,124 118,424 761,548 643,124 118,424
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 46.07 40.52 39.33 79.24 73.06 63.70 55.14 50.21 38.13

Notes: Individual level regressions across 332 cities.Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
using the interaction between wind direction and coal consumption at power plant (first two columns), the
interaction between wind direction and distance to plant (next two columns), and the interaction between
distance to plant and coal consumption (last two columns). City controls include distance to Shanghai,
Tianjin and Shenzhen seaports. Demographics include age, age-squared, gender, marital status, and an urban
hukou indicator.

large thermal plants is 22.4% and 50.9% for Beijing and Tianjin, respectively. The mean of
the ratio for all Chinese cities is 37.8%, which is between the values in Beijing and Tianjin.
This may suggest that the Chinese government does not necessarily locate the coal-fired
plants away from populated or politically important cities.

To further test whether politicians avoid populated, politically important and rich cities
when building new plants, we explore whether baseline city features predict newly built
plants. In Table A10, we explore whether city-level characteristics in 2004 can predict (a)
the ratio of upwind plants built after 2005, and (b) the IV based on plants built after 2005.
We find no meaningful associations between these variables and possible predictors of a
city’s influence, like baseline populations, GDP, total electricity consumption and industrial
electricity consumption. In the following section, we also show that our results are robust
to excluding big cities, major provincial capitals and coal producing regions (Table A15).

In Table A11, we construct placebo instruments, artificially changing the wind angle by
90, and then 180 degrees. The first two columns report the first stage results. As the angle
is increased, the falsified instrument is less likely to predict PM2.5 or emigration.

Finally, we turn our attention to the thermal inversions IV, used extensively by re-
searchers in many different contexts (Arceo et al., 2016; Chen et al., 2022; Hicks et al.,
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Table A9: The Coal-fired Plants Located Upwind of Large metropolitans

City Number of Ratio of Coal Consumption of Smallest Angle
Upwind Plants Upwind Plants Upwind Plants of Plants

Beijing 58 22.41% 2372 25
Tianjin 59 50.85% 2123 26
Shanghai 62 1.61% 2067 16
Guangzhou 30 16.67% 899 22
Shenzhen 25 44.00% 785 26
National mean 43.16 37.82% 511 25

Notes: The statistics are calculated using the large-scale thermal power plants located outside a given city
and within 500km. Following Freeman et al. (2019), we define the upwind region as a section of a circular
buffer drawn at a distance of 500km from a given city, and the angle between the section and the annual
dominant wind direction of the city being at least 45 degrees.

Table A10: Baseline Economy and the Wind Direction IV

Dependent variable: The ratio of upwind plants Wind direction and coal plants IV
(1) (2) (3) ( 4)

Baseline Population -0.0106 -0.0132 0.412 0.226
(0.0309) (0.0279) (0.489) (0.440)

Baseline GDP per capita -0.0151 -0.0231 -0.132 -0.414
(0.0302) (0.0289) (0.526) (0.522)

Baseline Industrial Elec cons 0.0225 0.210
(0.0224) (0.347)

Baseline Total Elec cons 0.0255 0.414
(0.0178) (0.269)

Observations 281 281 281 281
City Controls Yes Yes Yes Yes

Notes: City level regressions for 281 cities. We drop cities with missing values in baseline characteristics.
Dependent variables are based on plants built post 2005, independent variables are measured in the year
2004. Standard errors clustered at the hukou city level are reported in parentheses. City controls include
distance to Shanghai, Tianjin and Shenzhen seaports.
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Table A11: Placebo Wind Directions

Log (PM2.5) Leave hukou city indicator
Coal IV Placebo (+90 degrees) Coal IV Placebo (+180 degrees)
Low edu High edu Low edu High edu

(1) (2) (3) (4) (5) (6)

Log (PM2.5) -0.0708 0.0235 -0.159 -0.0281
(0.0594) (0.0518) (0.157) (0.0760)

Coal IV Placebo 0.00957**
(wind direction+90 degrees) (0.00478)

Coal IV Placebo 0.00134
(wind direction+180 degrees) (0.00173)

Observations 332 332 643,124 118,424 643,124 118,424
City Controls Yes Yes Yes Yes Yes Yes
Demographics N N Yes Yes Yes Yes
F-test of IVs 6.324 8.940 0.935 1.521

Notes: Individual level regressions across 332 cities. Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
using the interaction between wind direction (falsified), distance to coal plant, and coal consumption at
power plant. City controls include the log distance to Shanghai seaport, to Tianjin seaport, and to Shenzhen
seaport. Demographics include age, age-squared, gender, marital status, and an urban hukou indicator.

2015; Jans et al., 2018), and as such, been scrutinized thoroughly. Nonetheless, we ex-
amine whether lagged pollution levels can predict future levels of the strength of thermal
inversions in Table A12. We fail to find any such meaningful associations. Furthermore,
we also find that lagged inversions do not predict future inversions, suggesting that levels
of auto-correlation in inversions are low, and we may consider the data generating process
underlying inversions to be close to random.

A.1.3 The Huai River Regression Discontinuity

Between 1950-1980 China established coal-based free heating systems to residences
and offices north of the Huai River. This policy had long lasting effects, as even today
the heating systems are different between the northern and southern parts of the country.
The north relies on coal boilers releasing a large amount of pollutants. Chen et al. (2013)
examine the effects of this policy on life expectancy using an RD where they compare
cities just north of the river to those just south of it. We find that high-skilled workers are
less likely to in-migrate into cities with more pollution (but find no significant impacts on
out-migration).
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Table A12: Lagged Pollution and Thermal Inversions

Dependent variable: Strength of inversions
(1) (2) (3)

Lagged Log(PM2.5) -11.68 -11.79 -11.38
(12.88) (12.77) (12.80)

Lagged number of inversions 0.241
(0.181)

Lagged strength of inversions 0.0332 -0.0373
(0.0330) (0.0774)

Observations 3,652 3,652 3,652
R-squared 0.961 0.961 0.961
City fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes

Notes: Standard errors clustered at city level are reported in parentheses. City level regressions for 332 cities
over 11 years (2005 to 2015). Specifications include city and year fixed effects.

Here, we leverage the same empirical setup to examine migration decisions. Figure A1
shows the RD graphs where the horizontal axis represents the distance between the city and
the Huai river. In our top row we show the discontinuity in PM10 and PM2.5 levels. In the
bottom row, we look at in-migration rates, and find that only for the high-skill workforce,
there is less in-migration in cities that have more pollution. This effect is statistically and
economically meaningful in our RD regressions. We find no such differential response on
in-migration for the low-skilled.
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Figure A1: The Huai River RD

Notes: The top row shows the discontinuity in PM10 and PM2.5 at the Huai River. Second row shows the
out-migration by skill level. Bottom row shows the in-migration rate by skill-level. Bubble sizes are baseline
city populations.
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A.2 Alternative Model Specifications, Controls and Samples
Here we examine different model specifications, sample restrictions and control vari-

ables. First, we employ an individual-level longitudinal panel data, allowing us to track
individuals over time and control for individual-level unobservables. Importantly, we use
an alternative definition for migration status regardless of hukou location.

Then, we turn to the implications of cumulative pollution. We find that workers are
more sensitive to cumulative pollution when they make location choices, compared to
short-term pollution. Once again, the impacts of cumulative pollution are more pronounced
for high-skilled workers than their low-skilled counterparts. Finally, we use alternative
samples, alternative measures of air quality, and alternate sets of co-variate controls to
examine the effects of pollution.

A.2.1 Individual Longitudinal Panel and Alternative Definition of Migration
We employ an individual-level longitudinal panel and a different definition of migration

status to explore the spatial sorting of Chinese workers. We use the China Labor-force
Dynamic Survey (CLDS), which is a national social survey targeted at labor force dynamics
in China. CLDS 2016 asks a retrospective history of locations for individuals, and we create
an individual-level longitudinal panel between 2008 and 2016. Here, we define migration
to be an indicator for whether or not an individual changed city location between years,
regardless of whether they change their hukou. The strengths of the individual-level panel
lie in that it allows us to account for individual-specific unobservables and track those who
have moved multiple times and who have moved and returned home.

Table A13 presents the IV estimation of the relationship between pollution and the
out-migration tendency of individuals, controlling for year- and individual- fixed effects.
Including individual-fixed effects allow us to account for individual-level unobservables
(such as taste for clean air, individual preferences for a specific city) that may be correlated
with migration decisions. A 10% increase in PM2.5 raises out-migration rates by 2.19
percentage points for high-skilled workers.

In our main table, migrants are defined as those who are away from their hukou city,
so we may miss those who move to a different city and obtain local hukou in the city.
Thus, we may understate high-skilled workers’ migration response to pollution, as migrants
with high education attainment find it easier to obtain local hukou than those without. We
include both non-hukou migration (change residential locations without changing hukou
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Table A13: Individual Longitudinal Panel with Individual Fixed Effects

Dependent variable: Leave city location indicator
Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) 0.115** 0.0812 0.219** 0.0960* 0.0644 0.193** 0.0774 0.0385 0.206**
(0.0558) (0.0542) (0.100) (0.0540) (0.0525) (0.0964) (0.0539) (0.0538) (0.0972)

Observations 122,841 104,184 18,657 122,841 104,184 18,657 122,841 104,184 18,657
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather Controls No No No Yes Yes Yes No No No
Regional trend No No No No No No Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 51.62 43.38 55.60 53.91 43.99 59.93 50.67 42.48 56.85

Notes: Individual-level regressions across 277 cities and between 2008-16. The CLDS asks retrospective
histories of residential locations, covering 277 cities.Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
using the number of thermal inversions. Demographics include age, age-squared. Weather controls include
temperature, wind speed, sunshine duration and humidity. Region trend is a region-specific time trend.

locations) and hukou migration (change both residential and hukou location) in this defi-
nition of migration status. The effects on high-skill migration shown in Table A13 are, as
expected, larger in magnitude than our baseline estimates.

We control for weather amenities in the next three columns. The coefficient estimates
are similar. To account for the potential role played by differential migration patterns
between coastal and inland China, we further add region-specific trends in the last three
columns. Including region-specific trends do not affect our results.

A.2.2 Accumulated Pollution over Time

As migration decisions are long-lasting, we expect that people are more likely to re-
sponse to accumulated pollution, compared to contemporaneous pollution shocks. While
we measure out-migration in 2015, we wish to understand how migration decisions depend
on the cumulative PM2.5 concentration over different time intervals. Since the coal-fired
power plants are essentially leveraging the cross-sectional nature of the data, we use the
occurrence of thermal inversions averaged over different time periods to deal with the en-
dogeneity of cumulative air pollution.

In Table A14, we use specifications where PM2.5 are averaged over 5, 15 and 18 years,
respectively, leading up to the migration decision. We find that the longer the time period of
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Table A14: PM2.5 Measured over Different Time Intervals

Dependent variable: Leave hukou city indicator
Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (Mean PM2.5: 1998-2015) 0.113*** 0.104*** 0.173***
(0.0236) (0.0235) (0.0394)

Log (Mean PM2.5: 2001-2015) 0.107*** 0.0979*** 0.168***
(0.0230) (0.0231) (0.0387)

Log (Mean PM2.5: 2011-2015) 0.0913*** 0.0850*** 0.129***
(0.0220) (0.0231) (0.0297)

Observations 761,548 643,124 118,424 761,548 643,124 118,424 761,548 643,124 118,424
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 65.36 63.86 44.57 68.08 66.49 45.59 91.53 87.48 71.38

Notes: Individual level regressions across 332 cities.Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables using the
number of thermal inversions averaged over different time intervals. City controls include distance to
Shanghai, Tianjin and Shenzhen seaports. Demographics include age, age-squared, gender, marital status,
and an urban hukou indicator. Weather controls include temprature, humidity, sunshine duration and wind
speed averaged over different time intervals.

PM2.5 exposure, the larger the response in small increments. As such, pollution exposure
in a short time frame has a slightly smaller impact than the same amount of exposure spread
out over a longer time period. Once again, we see similar empirical patterns as our baseline
estimates. The effects of cumulative pollution on emigration are also more pronounced for
the skilled than the unskilled.

A.2.3 Different Samples and Alternative Measure of Air Quality

We use different samples to explore the relationship between pollution and out-migration.
We then use an alternative measure of air quality as our independent variable. First, we ex-
amine whether big cities, high polluting cities, or province capitals are driving our results.
We exclude such cities one at a time in Panel A and columns 1-6 in Panel B of Table A15.
This may help allay concerns about the influence of major cities or capitals in pollution
policy, placement of plants, or being outliers in terms of pollutants and/or skilled jobs.

Next, we may expect that coal-fired plants plants are more likely to be located in coal
producing areas, affecting the underlying industrial structure, and raising concerns about
other unobservable associations with migration rates. Shanxi is the largest coal producing
province in China, which we exclude in our estimation. As reported in columns 7-9 in
Panel B of Table A15, the results are slightly more precisely estimated.
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Table A15: Without Big Cities, High Polluters and Coal Producing Regions

Panel A: Exclude Beijing Exclude Tianjin Exclude Shijiazhuang
Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) 0.0761* 0.0609 0.132*** 0.142** 0.129** 0.180*** 0.0783** 0.0623 0.140***
(0.0389) (0.0424) (0.0369) (0.0556) (0.0619) (0.0487) (0.0393) (0.0426) (0.0390)

Observations 752,993 638,529 114,464 745,903 632,324 113,579 758,412 640,631 117,781
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 52.58 46.35 42.31 31.46 27.67 29.28 51.78 45.94 40.28

Panel B: Exclude Shenyang Exclude Zhengzhou Exclude Cities in Shanxi Province
Full sample Low edu High edu Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) 0.0766** 0.0605 0.138*** 0.0816** 0.0641 0.155*** 0.0921*** 0.0773** 0.148***
(0.0387) (0.0421) (0.0377) (0.0397) (0.0431) (0.0377) (0.0349) (0.0375) (0.0345)

Observations 758,589 641,096 117,493 754,535 637,980 116,555 722,306 609,605 112,701
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 53.42 47.25 42.65 51.02 45.21 40.14 84.82 77.61 68.94

Notes: Individual level regressions across 331 cities in Panel A and column 1-6 in Panel B (we exclude one
big city at a time) and across 321 cities in column 7-9 in Panel B (we drop cities in Shanxi). Standard errors
clustered at the hukou city level are reported in parentheses. We report Kleibergen-Paap rk Wald F statistic.
Instrumental variables specification using the interaction between wind direction, distance to coal plant, and
coal consumption at power plant. City controls include distance to Shanghai, Tianjin and Shenzhen seaports.
Demographics include age, age-squared, gender, marital status, and urban hukou indicator.

In Table A16, we split up the sample by age groups and marital status. We see that
the implications of pollution on emigration are stronger for younger workers with higher
education. Panel B further shows that married individuals are more responsive, perhaps as
they may have young children that may be affected by poor air quality.

Finally, we turn our attention to an alternative measure of air quality. As sources of pol-
lution affect not just PM2.5 but also other pollutants, we may pick up the combined impact
of many pollutants. Air Quality Index (AQI) is an overall indicator for air pollution con-
centration calculated using multiple atmospheric pollutants including SO2, NO2, PM10,
PM2.5, O3 and CO. Furthermore, the AQI is officially reported and widely disseminated.
Table A17 shows similar results using the AQI as our independent variable of interest.
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Table A16: By Age Groups

Dependent variable: Leave hukou city indicator
Age<35 Age>=35 Age<35&Married Age<35&Unmarried

Low edu High edu Low edu High edu Low edu High edu Low edu High edu
(1) (2) (3) (4) (5) (6) (7) (8)

Log (PM2.5) 0.0640 0.193*** 0.0572 0.0684*** 0.0922 0.253*** 0.00214 0.140***
(0.0627) (0.0504) (0.0368) (0.0227) (0.0737) (0.0713) (0.0435) (0.0370)

Observations 199,958 70,643 443,166 47,781 66,956 37,053 133,002 33,590
City Controls Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 33.65 40.70 49.93 40.62 34.24 36.70 30.24 42.93

Notes: Individual level regressions across 332 cities.Standard errors clustered at the hukou city level are
reported in parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification
using the interaction between wind direction, distance to coal plant, and coal consumption at power plant.
City controls include distance to Shanghai, Tianjin and Shenzhen seaports. Demographics include age,
age-squared, gender, marital status, and an urban hukou indicator.

Table A17: Air Quality Index

Dependent variable: Leave hukou city indicator
Full sample Low edu High edu

(1) (2) (3)

Log (AQI) 0.0795 0.0581 0.176**
(0.0659) (0.0682) (0.0736)

Observations 708,482 595,958 112,524
City Controls Yes Yes Yes
Demographics Yes Yes Yes
F-test of IVs 36.16 34.99 29.59

Notes: Individual level regressions across 238 cities that report AQI in 2014. Independent variable is Log
(Annual mean Air Quality Index).Standard errors clustered at the hukou city level are reported in
parentheses. We report Kleibergen-Paap rk Wald F statistic. Instrumental variables specification using the
interaction between wind direction, distance to coal plant, and coal consumption at power plant. City
controls include the log distance to Shanghai seaport, to Tianjin seaport, and to Shenzhen seaport.
Demographics include age, age-squared, gender, marital status, and an urban hukou indicator.

A.2.4 Additional Controls

In this section, we include various sets of controls that may confound the association
between local air pollution and migration decisions. In Table A18 we examine robustness
to additional geological and meteorological controls when using the thermal inversions in-
struments. These include measures of rainfall, average slope (elevation) of the city, fraction
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of the region covered by water bodies, and whether the city is coastal or not.
In Table A20 we test the validity of the wind IV to other economic and industrial con-

trols. In the first few columns of Table A20 Panel A, we account for other determinants
of the demand for skilled work at baseline. We do this to check whether the potential for
skilled work just so happens to be in places that are correlated with skill-specific migra-
tion. We find our estimates display similar patterns as before if we add controls for the
teacher-student ratio, the number of hospitals and doctors per capita in 2000.

Table A18: Additional Weather and Geological Controls: For Thermal Inversions

No. of Inversions Strength of Inversions
Full Sample Low edu High edu Full Sample Low edu High edu

(1) (2) (3) (4) (5) (6)

Log(PM 2.5) 0.117*** 0.115** 0.155*** 0.0880* 0.0842 0.151**
(0.0443) (0.0469) (0.0483) (0.0514) (0.0541) (0.0599)

Observations 685,699 575,693 110,006 685,699 575,693 110,006
City Controls Yes Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes
F-Test of ivs 37.10 34.22 35.23 13.80 13.06 13.13

Notes: Individual level regressions across 261 cities (for which we have measures of the controls). Standard
errors clustered at the hukou city level are reported in parentheses. We report Kleibergen-Paap rk Wald F
statistic. Instrumental variables specification using thermal inversions. City controls include distance to
Shanghai, Tianjin and Shenzhen seaports. Weather controls include temperature, wind speed, sunshine
duration and humidity. Demographics include age, age-squared, gender, marital status, and an urban hukou
indicator. In addition, we control for annual rainfall, average slope (elevation) of the city, fraction of the
region area under water coverage, and whether on the coast.

In the next three columns of Table A20 Panel A, we include controls for local economic
production in 2000. Our economic controls include baseline measures of GDP per capita,
as well as the ratio of product values of services and manufacturing as proxies for the
industrial structure. Our results are not meaningfully affected by these controls.

Fine particle concentration tends to be correlated with local industrial pollutant emis-
sions. To account for the potential role played local industrial emissions, we add industrial
SO2 emission, waste water emission and dust emission as covariates in last three columns
of Table A20 Panel A. The inclusion of these industrial emissions does little to affect the
impacts of PM2.5 concentration.

In the first three columns of Panel B, we start with all three sets of controls that we
have in Panel A entered simultaneously. After which, we address the concern that power
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Table A19: Additional Weather and Geological Controls: For House Price Regressions

Log(House Prices) Log(House Prices) Log(House Prices)
(1) (2) (3)

Log(Population)d 0.259** 0.314** 0.204*
(0.121) (0.147) (0.119)

Log(Lhd/Lud) 0.423*** 0.407*** 0.456***
(0.0583) (0.0690) (0.0556)

Observations 121 121 117
Weather Control No Yes Yes
Geological Control No No Yes
F-Test of ivs 12.66 13.14 11.73

Notes: City-level regressions, and robust standard errors. We report Kleibergen-Paap rk Wald F statistic.
Instrumental variables specifications, where we instrument for log population and log skill ratio as described
in the text and Table 5. City controls include distance to Shanghai, Tianjin and Shenzhen seaports. Weather
controls include temperature, wind speed, sunshine duration and humidity. Geographic controls include
average slope (elevation) of the city, fraction of the region area under water coverage, and whether on the
coast.

plants may be built near cities that require more electricity. Even though those plants
supply electricity to vast areas including many remote provinces (Freeman et al., 2019), we
examine this concern by controlling for city-level electricity consumption. We include total
(industrial, commercial and residential) electricity consumption in the next three columns
of Table A20 Panel B, and add industrial electricity consumption in the last three columns.
Adding city-level electricity consumption barely changes our empirical patterns.

B Air Pollution Data Disclosure in China
Despite hazardous levels of pollution, Chinese citizens used to have limited or no access

to information about local air quality. In 2008 the US embassy published PM2.5 data from
five Chinese cities, leading to a public attention on air quality. In response to public demand
for the publication of PM2.5 data, the Chinese government started to disclose real time
PM2.5 data in most Chinese cities from 2012. Information on real time PM2.5 was made
available in all Chinese cities by January 1, 2015.

The disclosure of pollution information had an important effect on household avoidance
behavior. The sales of indoor air filtration more than doubled in response to the PM2.5 data
disclosure in 2012. Table B1 shows that PM2.5 data disclosure had significant impacts on
the out-migration elasticity of the high-skilled.
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Table A20: Additional Controls: Skills, Economic and Industrial Emissions

Panel A Dependent variable: Leave hukou city indicator
Additional Controls: Baseline skill controls Baseline economy controls Industrial emmisions controls

Full Sample Low edu High edu Full Sample Low edu High edu Full Sample Low edu High edu
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) 0.0712 0.0592 0.124*** 0.0403 0.0251 0.0984** 0.0539 0.0396 0.119***
(0.0433) (0.0466) (0.0427) (0.0422) (0.0454) (0.0444) (0.0435) (0.0470) (0.0373)

Observations 674,032 565,239 108,793 674,032 565,239 108,793 674,032 565,239 108,793
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 55.68 53.73 33.41 51.43 48.91 33.90 60.76 59.45 36.89

Panel B Dependent variable: Leave hukou city indicator
Additional Controls: All 3 sets of controls All 3 sets + Total elec cons All 3 + Industry elec cons

Full Sample Low edu High edu Full Sample Low edu High edu Full Sample Low edu High edu
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log (PM2.5) 0.0756** 0.0677* 0.109*** 0.0653* 0.0587 0.0959*** 0.0643* 0.0574 0.0972***
(0.0343) (0.0362) (0.0335) (0.0369) (0.0393) (0.0346) (0.0358) (0.0380) (0.0338)

Observations 674,032 565,239 108,793 650,828 544,681 106,147 650,828 544,681 106,147
City Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes
F-test of IVs 58.67 58.10 34.15 53.59 52.68 31.95 54.78 54.32 31.76

Notes: Individual level regressions across 261 cities in Panel A, and columns 1-3 of Panel B (cities for
which we have measures of the controls). Individual-level regressions across the 253 cities for which we
have electricity consumption data and the full set of city controls, in columns 4-9 of Panel B.Standard errors
clustered at the hukou city level are reported in parentheses. We report Kleibergen-Paap rk Wald F statistic.
Instrumental variables specification using the interaction between wind direction, distance to coal plant, and
coal consumption at power plant. Baseline skill controls include teacher student ratio, log hospitals per
capita and log doctors per capita in 2000. Baseline economy controls include log GDP per capita and
industrial structure (the product value at service sector / manufacture sector). Industrial emissions controls
include log industrial SO2 emission, log industrial waste water emission and log industrial dust emission.
City controls include distance to Shanghai, Tianjin and Shenzhen seaports. Demographics include age,
age-squared, gender, marital status, and an urban hukou indicator. Total electricity consumption includes
industrial, residential and commercial consumption.

A19



Table B1: PM2.5 Data Disclosure and Outmigration

Dependent variable: Leave city location indicator
Full sample Low edu High edu Full sample Low edu High edu

(1) (2) (3) (4) (5) (6)

Log(PM2.5)ot × Data disclosed indicatorot 0.000902 -0.000585 0.0106** 0.000997 -0.000482 0.0105**
(0.00147) (0.00139) (0.00495) (0.00143) (0.00130) (0.00488)

Observations 122,841 104,184 18,657 122,841 104,184 18,657
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes
Regional trend No No No Yes Yes Yes

Notes: Individual-level regressions across 277 cities. The CLDS lists the history of residential locations,
which include 277 cities. Standard errors clustered at the city level. We report Kleibergen-Paap rk Wald F
statistic. Demographics include age, age-squared. We control for the log of PM2.5 and an indicator for
PM2.5 data disclosure. Data disclosure indicator=1 if PM2.5 data was officially made available in a given
city-year, =0 otherwise.
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C Additional Tables and Figures

Table C1: Examples of the Points-based Hukou Policy Across Chinese Cities

City Beijing Shanghai Guangzhou Shenzhen

Total hukou points needed Varies 72 60 100

Education

Doctoral degree: 37 points Doctoral degree: 27 points Above college: 60 points Doctoral degree:100 points
Master degree: 26 points Master degrees: 24 points Some college: 40 points Master degrees: 90 points
Bachelor degree: 15 points Bachelor degree: 21 points High school: 40 points Bachelor degree: 80 points
Some college: 10.5 points College: 60 points

Skills

College English Test 6-8: 8 points Junior workers: 10 points Junior workers: 20 points
College English Test 4: 7 points Middle-level workers: 30 points Middle-level workers: 40 points

High-level workers: 50 points High-level workers: 70 points
Senior technical worker: 100 points

Junior professional: 70 points
Middle professional: 90 points
Senior professional: 100 points

Note: Table shows a few examples of hukou requirements for city workers. Data come from the official
government websites of the Beijing, Shanghai, Guangzhou and Shenzen. ‘Total hukou points needed’ show
the number of points required to obtain local hukou, whereas the lower rows show how different qualifications
add to the individual’s points.

Table C2: Preferences for Environmental Issues by Education Levels

Claim environmental Discuss environmental Donation for environment Concern over Appeal on Government environmental Non-government
issue is terrible issues protection environmental issue Environmental issue activity environmental activity

(1) (2) (3) (4) (5) (6) (7)

High school 0.130*** 0.135*** 0.0592*** 0.121*** 0.0252*** 0.121*** 0.0691***
(0.0116) (0.0173) (0.0115) (0.0153) (0.00841) (0.0138) (0.0116)

Some college or above 0.173*** 0.233*** 0.152*** 0.176*** 0.0571*** 0.248*** 0.157***
(0.0118) (0.0190) (0.0154) (0.0191) (0.0120) (0.0168) (0.0143)

P-value 0.001 0.000 0.000 0.000 0.010 0.000 0.000
t-value -3.20 -6.10 -5.65 -3.58 -2.62 -8.16 -6.25
Baseline average 0.497 0.376 0.106 0.389 0.062 0.133 0.100
City FE Y Y Y Y Y Y Y
Demographics Y Y Y Y Y Y Y
N 29169 11331 11331 11331 11331 11331 11331
adj. R2 0.085 0.202 0.182 0.202 0.186 0.196 0.203

Note: Individual level regressions across 113 cities in column 1 and 127 cities in column 2-7. Demographic
controls include age, age-squared, gender, marital status and an indicator for urban hukou. The data source
is the China Household Panel Survey (CFPS) in column 1 and the Chinese General Social Survey (CGSS)
in column 2-7. In the CFPS , there is a survey question: In your opinion, how terrible the environment issue
is in China. (0=totally not terrible; 2,···,10=very terrible). Based on this question, we define environmental
attitude dummy: D=1, if the answer is 6-10; =0, if the answer is 0-5. In the CGSS, there is a survey question:
whether you participate in the following activity. 1=never, 2=occasionally; 3=often. We define an indicator:
D=1 if the answer=2,3; D=0 if the answer=1. P-value: the p-values of test of Some college or above=High
school; t-value: t-values of test of Some college or above=High school. Standard errors clustered at the city
level are reported in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01
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Table C3: First-stage Relationships for Additional Model-based Parameter Estimation

Panel A: For Labor Supply Log (Unskilled Real Wage) Log (Skilled Real Wage)
(1) (2) (3) (4)

NTR IV 0.161*** 0.162***
(0.0161) (0.0153)

WID IV 0.00222*** 0.00387***
(0.000123) (0.000111)

Pollution IV No. of Inversions Strength of Inversions No. of Inversions Strength of Inversions
Observations 13,570 13,570 13,570 13,570
R-squared 0.132 0.132 0.136 0.153

Panel B: For Agglomeration For House Prices & Pollution
Log (Number of Skilled Workers) Log(Skill Ratio) Log(Population)

(1) (2) (3) (4)
∆College graduates2001−5 0.400*** 0.395***

(0.0386) (0.0390)
∆College graduates2001−5/Baseline Lu,2001 0.835*** 0.127

(0.130) (0.0915)
Predicted migration flow 0.00158 0.00425***

(0.00148) (0.00102)
Pollution IV No. of Inversions Strength of Inversions
Observations 121 121 121 121
R-squared 0.672 0.665 0.573 0.546

Notes: We control for number of inversions in Column 1 and 3, and strength of inversions in Column 2
and 4. All regressions weighted by the population in 2000. Panel A: We control for hukou index, the
interaction of hukou index to migration status indicator, the inverse hyperbolic sine of distance from origin
to destination cities. We also control for temperature, humidity, sunshine duration, and wind speed. Standard
errors clustered at the city level are reported in parentheses. Panel B: We control for distance to seaport,
region fixed effects, city area and weather amenities (temperature, humidity, sunshine duration and wind
speed). Robust standard errors are reported in parentheses. We report Kleibergen-Paap rk Wald F statistic.
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Figure C1: The Distribution in Pollution and Wages Across Cities

(a) Spread in Pollution Across Cities (b) Wage Distribution Across Cities

Notes: Distributions across cities for different years. Wage distribution drawn from the City Statistical
Yearbooks. PM2.5 data from the Global Annual PM2.5 grids.

Figure C2: Event Study of the Number of College Students by Baseline Propensity to
Expand

(a) College Students in City (b) University Professors in City

Notes: We test for pre-trends and dynamics of the college expansion policy in an event study
framework. City-by-year level regressions from 1994 to 2010. Outcome is number of new college
students, relative to one year preceding the expansion (1998). In Figure C2a, we run the regression:
Studentsdt = β0 +∑

2010
t=1994 βt

(
1t−1998 ×Treatd,1990

)
+ γt + δc + εdt . In Figure C2b the dependent variable is

the number of professors in the city. We plot βt . Treatd,1990 is the number of university students in 1990.
Horizontal axis is normalized to the year preceding the expansion (1998).
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Figure C3: Distribution of θhd across cities, from Equation 18

Graph describes the distribution of θhd across cities. Equation 18 describes how we estimate θhd .
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Figure C4: Model Fit in 2015

Notes: We plot the actual and predicted relationship between our main variables, where the predictions are
based on model-estimated parameters. Bubbles are weighted by populations in the year 2000. We exclude
the residual ξsod in our model predictions.

Figure C5: Out of Sample Test of Migration Distance

Notes: We plot the relationship between predicted and actutal migration distance for migrants who move
out from their hukou regions, where the predictions are based on model-estimated parameters. Bubbles are
weighted by populations in the year 2000. We exclude the residual ξsod in our model predictions.
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Figure C6: Correlates of Predicted TFP and Predicted Amenities

Notes: We plot the relationship between predicted TFP and various innovation measures in the top four
figures, and plot the relationship between predicted amenities and access to education and between predicted
amenities and access to hopspital care in the bottom two figures. Access to education is measured by the
first principal component of the number of schools per capita and the number of teachers per capita. Access
to hospital care is measured by the first principal component of the number of hopitals per capita and the
number of doctors per capita. Bubbles are weighted by populations in the year 2000. We exclude the residual
ξsod in our model predictions.
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D Additional Counterfactual Results

Table D1: Additional Counterfactual Results: Reducing Pollution in Beijing

Panel A: GDP per Worker in Nearby Cities (within 300km from Beijing) (%)
Overall Change Health Channel Relocation Relocation+Agglom

(1) (2) (3) (4)

Reduce steady state PM2.5 -0.072 0.000 -0.025 -0.072
Relax skilled hukou -0.061 0.000 -0.023 -0.061
Relax unskilled hukou -0.008 0.000 0.005 -0.008
Reduce PM2.5 & relax skilled hukou -0.086 0.000 -0.021 -0.086
Reduce PM2.5 & relax unskilled hukou -0.181 0.000 -0.058 -0.181

Panel B: GDP per Worker in Beijing Under No Externalities or Pure Relocation (%)
Overall Change Health Channel Relocation Relocation
(no externalities) (no externalities) (no externalities) (pure relocation)

(1) (2) (3) (4)

Reduce steady state PM2.5 10.364 5.819 4.295 4.111
Relax skilled hukou 4.931 0.000 4.931 4.931
Relax unskilled hukou -4.654 0.000 -4.654 -4.654
Reduce PM2.5 & relax skilled hukou 15.116 5.819 8.785 8.628
Reduce PM2.5 & relax unskilled hukou 5.707 5.819 -0.106 -0.304

Notes: In panel A, we replicate our exercises in Table 7 and present the effects on nearby cities . Panel A
column 1 shows the gain to overall GDP per worker. Panel A column 2 shows the component purely
explained by the health-productivity channel. Panel A column 3 shows the pure relocation channel, and
Panel A column 4 also incorporates agglomeration as a consequence of relocation. In panel B columns 1-3,
we do addiontal excercises, shutting down agglomeration and congestion effects. Panel B Column 1 shows
the gain to overall GDP per worker. Panel B column 2 shows the component purely explained by the
health-productivity channel. Panel B column 3 shows the pure relocation channel. In panel B column 4 we
further shut down how the health effects of pollution may affect relocation choices. We reduce the steady
state amount of pollution in Beijing by 50% (row 1 in panels A and B). Next, we lower hukou restrictions
for each skill level (rows 2 and 3 in panels A and B) by 50%. Finally, we lower the hukou regulations by
50% while reducing steady state pollution (rows 4 and 5 in panels A and B).
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Table D2: Distributional Consequences of Reducing Pollution in One City

Skilled Wage in Beijing Unskilled Wage in Beijing
Overall Health Relocate+Agglom Overall Health Relocate+Agglom

(1) (2) (3) (4) (5) (6)

Reduce steady state PM2.5 2.702 5.819 -2.945 18.260 5.819 11.757
Reduce exogenous part of PM2.5 2.589 5.344 -2.616 16.699 5.344 10.779
Relax skilled hukou -4.332 0.000 -4.332 12.462 0.000 12.462
Relax unskilled hukou 7.661 0.000 7.661 -6.371 0.000 -6.371
Reduce PM2.5 & relax skilled hukou -1.580 5.819 -6.992 33.108 5.819 25.789
Reduce PM2.5 & relax unskilled hukou 10.438 5.819 4.365 10.559 5.819 4.479

Notes: This table shows the corresponding wage effects of the policy exercises in our main Table 7. We
reduce the steady state amount of pollution in Beijing by 50% (row 1). We then reduce only the exogenous
component of pollution by 50% (row 2). Next, we lower the hukou restrictions for each skill level (rows 3
and 4) by 50%, keeping pollution fixed. Finally (rows 5 and 6) we relax hukou regulations by 50% while
reducing steady state pollution. The first 3 columns show the effect on the wage of college educated
workers, whereas the last 3 columns show the effects on the wage of the non-college educated.

Table D3: The Productivity Effect of Relocating Pollution (no externalities and pure relo-
cation)

Change in GDP per Worker (%)
Overall changes Health Relocation Relocation
(no externalities) (no externalities) (no externalities) (pure relocation)

(1) (2) (3) (4)

Relocate steady state PM2.5 7.559 2.893 3.097 2.332
Relax hukou 2.318 0.000 2.318 2.318
Relax overall mobility constraints 6.319 0.000 6.319 6.319
Relocate PM2.5 & relax hukou 9.845 2.893 5.216 4.486
Relocate PM2.5 & lower migration costs 14.143 2.893 9.105 8.418

Notes: In this table, we do an additional exercise, shutting down agglomeration and congestion effects.
Column 1 shows the overall gain to GDP. Column 2 shows the increase in GDP as a consequence of the
health effects only. Column 3 shows the gain due to the re-allocation of labor channel only. In column 4 we
further shut down how the health effects of pollution may affect relocation choices. We relocate PM2.5 in all
cities based on the amount of skill-biased capital in the city (row 1). In row 2, we relax the hukou restriction
in the 24 top tier cities by 50% (row 2). In row 3 we relax overall migration costs in the 24 high tier cities by
50%.
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Table D4: Distributional Effects of Relocating Pollution Across Cities

Skilled Wage Unskilled Wage
Overall Health Relocate+Agglom Overall Health Relocate+Agglom

(1) (2) (3) (4) (5) (6)

Relocate steady state PM2.5 17.723 4.493 10.484 1.070 1.638 -1.917
Relocate exogenous part of PM2.5 8.924 2.402 5.688 0.983 1.014 -0.469
Relax hukou 3.861 0.000 3.861 1.933 0.000 1.933
Relax overall mobility constraints 10.066 0.000 10.066 5.384 0.000 5.384
Relocate PM2.5 & relax hukou 19.923 4.493 12.649 2.403 1.638 -0.656
Relocate PM2.5 & lower mig costs 27.784 4.493 19.864 6.701 1.638 3.166

Notes: This table shows the corresponding wage effects of the policy exercises in our main Table 8. We
relocate PM2.5 in all cities based on the amount of skill-biased capital in the city (row 1). In row 2, we
relocate only the exogenous component of pollution. In addition to such relocations of pollution, we also
relax the hukou restriction in the 24 top tier cities by 50% (row 3). In row 4 we relax overall migration costs
in the 24 high tier cities by 50%. Columns 1-3 show the effects on skilled workers, while columns 4-6 show
the effects on unskilled workers.

Table D5: Welfare Effects of Relocating Pollution Across Cities

Skilled Welfare Unskilled Welfare Average Welfare
(1) (2) (3)

Relocate steady state PM2.5 29.660 2.258 4.628
Relocate exogenous part of PM2.5 13.122 1.326 2.306
Relax hukou 9.895 0.935 1.710
Relax overall mobility constraints 17.458 10.051 10.692
Relocate PM2.5 & relax hukou 42.911 1.502 5.085
Relocate PM2.5 & lower migration costs 55.354 13.289 16.928

Notes: This table shows the corresponding welfare effects of the policy exercises in our main Table 8. We
relocate PM2.5 in all cities based on the amount of skill-biased capital in the city (row 1). In row 2, we
relocate only the exogenous component of pollution. In addition to such relocations, we also relax hukou
restrictions in the 24 top tier cities by 50% (row 3). In row 4 we relax overall migration costs in the 24 high
tier cities by 50%. Rows 3 and 4 keep pollution fixed. Rows 5 and 6 relocate pollution while relaxing
migration costs.
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Table D6: Distributional Effects of Pollution Regulation

Skilled Wage Unskilled Wage
Overall Health Relocate+Agglom Overall Health Relocate+Agglom

(1) (2) (3) (4) (5) (6)

Control PM2.5 3.504 1.485 1.896 3.603 1.536 1.958
Control PM2.5 & relax hukou 7.583 1.485 5.840 5.645 1.536 3.921
Control PM2.5 & lower mig costs 13.964 1.485 12.115 9.142 1.536 7.368

Notes: This table shows the corresponding wage effects of the policy exercises in our main Table 9. We
reduce pollution according to the targets set by the 2013 Air Pollution Prevention and Control Plan (row 1).
In addition to pollution regulations, we also relax the hukou restriction (row 2) and migration costs (row 3)
in higher tier cities by 50%. Columns 1-3 show effects on skilled wages. Columns 4-6 on unskilled wages.

Table D7: Welfare Effects of Pollution Regulation

Skilled Welfare Unskilled Welfare Average Welfare
(1) (2) (3)

Control PM2.5 7.150 1.087 1.611
Control PM2.5 & relax hukou 18.425 1.978 3.401
Control PM2.5 & lower migration costs 26.668 11.224 12.560

Notes: This table shows the corresponding welfare effects of the policy exercises in our main Table 9. We
reduce pollution according to the 2013 Air Pollution Prevention and Control Plan (row 1). In addition to
pollution regulations, we also relax the hukou restriction (row 2) and migration costs (row 3) in higher tier
cities by 50%.
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Table D8: Reducing Pollution in Beijing: Changes in GDP per worker (%)

Panel A: Use Tombe and Zhu (2019) elasticity for all workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Reduce steady state PM2.5 13.984 13.648 13.528 13.422
Reduce exogenous part of PM2.5 12.387 12.005 11.86 11.724
Relax skilled hukou 7.444 7.971 8.194 8.419
Relax unskilled hukou -4.376 -4.384 -4.359 -4.315
Reduce PM2.5 & relax skilled hukou 21.825 22.07 22.201 22.353
Reduce PM2.5 & relax unskilled hukou 9.516 9.173 9.077 9.012

Panel B: Use Tombe and Zhu (2019) elasticity for skilled workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Reduce steady state PM2.5 14.37 14.374 14.381 14.392
Reduce exogenous part of PM2.5 12.784 12.767 12.765 12.765
Relax skilled hukou 7.718 8.552 8.907 9.268
Relax unskilled hukou -3.962 -3.617 -3.467 -3.309
Reduce PM2.5 & relax skilled hukou 22.482 23.361 23.745 24.14
Reduce PM2.5 & relax unskilled hukou 10.333 10.703 10.869 11.044

Panel C: Use Tombe and Zhu (2019) elasticity for unskilled workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Reduce steady state PM2.5 14.007 13.604 13.422 13.23
Reduce exogenous part of PM2.5 12.394 11.981 11.798 11.607
Relax skilled hukou 7.901 7.587 7.441 7.284
Relax unskilled hukou -4.179 -4.553 -4.693 -4.819
Reduce PM2.5 & relax skilled hukou 22.331 21.615 21.287 20.938
Reduce PM2.5 & relax unskilled hukou 9.748 8.951 8.621 8.296

Notes: In this counterfactual we reduce the steady state amount of pollution in Beijing by 50% (row 1). We
then reduce only the exogenous component of pollution by 50% (row 2). Next, we lower the hukou
restrictions for each skill level (rows 3 and 4) by 50%, keeping pollution fixed. Finally (rows 5 and 6) we
relax hukou regulations by 50% while reducing steady state pollution.

A31



Table D9: Relocating Pollution for China: Changes in GDP per worker (%)

Panel A: Use Tombe and Zhu (2019) elasticity for all workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Relocate steady state PM2.5 6.386 5.03 4.339 3.556
Relocate exogenous part of PM2.5 3.592 2.966 2.644 2.273
Relax hukou 2.789 3.601 4.043 4.572
Relax overall mobility constraints 7.56 9.243 10.102 11.091
Relocate PM2.5 & relax hukou 9.054 8.416 8.124 7.828
Relocate PM2.5 & lower migration costs 14.153 14.277 14.348 14.455

Panel B: Use Tombe and Zhu (2019) elasticity for skilled workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Relocate steady state PM2.5 6.957 6.49 6.289 6.082
Relocate exogenous part of PM2.5 3.812 3.552 3.44 3.325
Relax hukou 2.449 2.697 2.804 2.913
Relax overall mobility constraints 6.708 7.178 7.375 7.574
Relocate PM2.5 & relax hukou 9.298 9.008 8.885 8.759
Relocate PM2.5 & lower migration costs 13.897 13.772 13.715 13.653

Panel C: Use Tombe and Zhu (2019) elasticity for unskilled workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Relocate steady state PM2.5 6.106 5.288 4.865 4.38
Relocate exogenous part of PM2.5 3.435 3.115 2.95 2.763
Relax hukou 2.962 3.412 3.627 3.862
Relax overall mobility constraints 7.882 8.905 9.371 9.866
Relocate PM2.5 & relax hukou 8.906 8.521 8.306 8.049
Relocate PM2.5 & lower migration costs 14.115 14.27 14.291 14.279

Notes: In this counterfactual exercise we relocate PM2.5 in all cities based on the amount of skill-biased
capital in the city (row 1). In row 2, we relocate only the exogenous component of pollution. In row 3, we
relax hukou restrictions in the 24 top tier cities by 50%, keeping pollution fixed. In row 4 we relax overall
migration costs to the 24 top tier cities by 50%, keeping pollution fixed.
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Table D10: 2013 City-level Pollution Caps: Changes in GDP per Worker (%)

Panel A: Use Tombe and Zhu (2019) elasticity for all workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Reduce steady state PM2.5 3.892 4.282 4.469 4.673
Reduce exogenous part of PM2.5 6.853 8.104 8.756 9.515
Reduce PM2.5 & relax unskilled hukou 11.722 13.864 14.944 16.174

Panel B: Use Tombe and Zhu (2019) elasticity for skilled workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Reduce steady state PM2.5 3.571 3.567 3.565 3.561
Reduce exogenous part of PM2.5 6.163 6.414 6.52 6.628
Reduce PM2.5 & relax unskilled hukou 10.509 10.987 11.184 11.384

Panel C: Use Tombe and Zhu (2019) elasticity for unskilled workers
Elasticity=1.19 Elasticity=1.4 Elasticity=1.5 Elasticity=1.61

Reduce steady state PM2.5 3.895 4.275 4.454 4.647
Reduce PM2.5 & relax skilled hukou 7.035 7.902 8.311 8.755
Reduce PM2.5 & relax unskilled hukou 12.057 13.508 14.172 14.879

Notes: In this counterfactual we reduce pollution according to the targets set by the 2013 Air Pollution
Prevention and Control Plan (row 1). In addition to pollution regulations, we also relax the hukou restriction
in high-tier cities (row 2), and overall migration costs (row 3) by 50
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E Additional Model Derivations

Figure E1: The Flowchart of Our Spatial GE Model

Notes: We summarize our model’s primary relationships in this flowchart for convenience.

E.1 Deriving Labor Supply and Welfare
In this appendix we derive the labor supply curve from the worker utility function in

our main text.
Vjsod = µ jsdwsdZ−γs

d hp−νs
d adξsodexp−Msod (7)

Workers will pick the destination with the highest value of Vjsod = w̃sodµ jsd , where we de-
fine w̃sod ≡ wsdZ−γs

d hp−νs
d adξsodexp−Msod to be a composite of wages, costs and amenities.

The probability that someone from origin o picks destination 1 is given by:

πso1 = Pr [w̃so1µs1 > w̃sod′µsd′ ] ∀d′ ̸= 1

= Pr
[

µsd′ <
w̃s1µs1

w̃sod′

]
∀d′ ̸= 1

=
∫ dF

dµs1
(µs1,ωso1µs1, ......,ωsoDµsD)dµs1 (E.1)
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where we define ωsod ≡ w̃sp1
w̃sod′

. We assume that the preferences are distributed with the
following Frechet distribution:

F(µs1, .....,µsD) = exp

{
−

[
D

∑
d=1

µ
−ηs
sd

]}
(E.2)

So the derivative of the CDF is given by:

dF
dµs1

= ηsµ
−ηs−1
s1 exp

{
−

[
D

∑
d=1

µ
−ηs
sd

]}
(E.3)

This derivative evaluated at (µs1,ωso1µs1, ......,ωsoDµsD), allows us to determine the prob-
ability of choosing destination 1, given by π1os:

πso1 =
∫

ηsµ
−ηs−1
s1 exp

{
−

[
D

∑
d=1

(ωsodµsd)
−ηs

]}
dµs1

=
1

∑
D
d=1 ω

−ηs
sod

∫ ( D

∑
d=1

ω
−ηs
sod

)
µ
−ηs−1
s1 exp

{
−

[
µ
−ηs−1
s1

(
D

∑
d=1

ω
−ηs
sod

)]}
dµs1

=
1

∑
D
d=1 ω

−ηs
sod

∫
dF(µ)

=
1

∑
D
d=1 ω

−ηs
sod

.1 =
(w̃so1)

ηs

∑
D
d=1 (w̃sod)

ηs
(E.4)

The third line comes from the properties of the Frechet distribution, where we know that
the term in the integral of the second line is simply the PDF with a shape parameter η , and
a scale parameter ∑

D
d=1 ω

−ηs
sod . Expanding on the definitions for w̃sod , and scaling up the

probability by the size of the skilled workforce Pos by origin, we derive labor supply by
skill and destination (in our main text):

πsod =

[
wsdZ−γs

d hp−νs
d asdξsodexp−Msod

]ηs

∑d′

(
wsd′Z−γs

d′ hp−νs
d′ asd′ξsod′exp−Msod′

)ηs
and Lsd = ∑

o
Posπsod (9)
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The Frechet assumptions also allow us to measure aggregate welfare. Using equation 7, we
can integrate over the the location preference µ jsd , conditional on choosing a destination.

E[Vjsod|d] = (w̃sod)E[µ jsd|d]

= (w̃sod)π
− 1

ηs
sod Γ

(
1− 1

ηs

)

=

(
∑
d′

(
wsd′Z−γs

d′ hp−νs
d′ asd′ξsod′exp−Msod′

)ηs

) 1
ηs

Γ

(
1− 1

ηs

)
, (E.5)

where Γ is the gamma function, and is constant across cities.
Average city utility may depend on hukou costs. For instance, if a high-amenity city

has a very restrictive hukou policy it may have a high average utility as those who originate
from this city already have access to the amenities without paying hukou costs. We define
average utility for those from city o to be:

Vso ≡

(
∑
d′

(
wsd′Z−γs

d′ hp−νs
d′ asd′ξsod′exp−Msod′

)ηs

) 1
ηs

(E.6)

The equation shows that the average utility depends on the average option value migrating
to any other city, and the ‘utility’ earned there. This average is scaled by the Frechet shape
parameter ηs as it captures the dispersion in tastes across locations. The utility of those in
city o is a decreasing function of migration costs to all other cities, as the option value of
moving to those cities fall. We can therefore, rewrite the average utility as a function of
hukou restrictions, and the labor supply as a function of utility in the manner described in
the main text, by using the above set of equations:

log πsod =−ηslogVso +ηs (log wsd −νslog hpd)+ηslog asd −ηsγslogZd −ηsMsod + ξ̃sod ,

(10)

E.2 Elasticity of Capital, and Skill-biased Capital
So far the model assumes that capital is perfectly supplied at the rate R∗. If however,

capital was fixed at a value K̄d in a city, it would not change the skill-premia. The average
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earnings for a worker with skill s in district d would be:

logwsd = log
(

∂Yd

∂ℓsd

)
= logθsd + logρ +

[
1−
(

1− 1
σE

)(
1
ρ

)]
logYd

+

(
1− 1

σE

)(
1
ρ

)
(logAd +(1−ρ) log K̄d)−

1
σE

logLsd (E.7)

Here the modified term
(

1
ρ

)
(logAd +(1−ρ) log K̄d) is common across skill levels, and

not affect skill premia. It varies across cities, just as TFP in the main model. We can
similarly (re)define a modified TFP term that includes the immobile capital.

We can explicitly model skill biased capital as affecting the productivity parameter θsd .
Below, we explicitly model skill biased capital to show how flexible forms of introducing
it do not influence the estimation. In the following set up, the noticeable changes are
where equation 3 has been modified into equation E.10, which includes an elasticity of
substitution between labor ℓsd and skill biased capital ksd represented by σs:

Yd = AdLρ

d K(1−ρ)
d (E.8)

Ld =

(
∑
s

θsdL
σE−1

σE
sd

) σE
σE−1

(E.9)

Lsd =

(
Λsk

σs−1
σs

sd +(1−Λs)ℓ
σs−1

σs
sd

) σs
σs−1

, (E.10)

where ℓsd is the supply of workers of skill s, and Lsd is now a labor aggregate over workers
and capital. Given this new set up, earnings can be represented by equation E.11, instead
of equation 4 in our main text:

logwsd = log
(

∂Yd

∂ℓsd

)
=

1
ρ

logAd+log ρ̃+logθsd(1−Λs)+
1

σE
logLd+

(
1
σs

− 1
σE

)
logLsd−

1
σs

logℓsd ,

(E.11)

E.3 On Existence and Uniqueness of the Equilibrium
Section 5 presents the model and equilibrium. Here we describe the determinants be-

hind the existence and uniqueness of the equilibrium defined in Section 5.3.
When bilateral migration costs are present we make a few other standard assumptions
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that help meet sufficient conditions for the existence of a spatial equilibrium (Allen et al.,
2020): Msod are finite, the graph of the matrix of costs is strongly connected, and they are
quasi-symmetric. The connectivity assumption simply implies that there is a sequential
path of finite bilateral migration costs that can link any two cities o and d. The quasi-
symmetry assumption, which is not entirely necessary for existence (but does aid the solu-
tion), simply says that one portion of the costs is symmetric. That is, Msod = MsoMsdM̃sod ,
and M̃sod = M̃sdo. So in moving from Shanghai to Beijing, there may be a component of
the cost that is Beijing specific (say, related to Beijing hukou policy), a component related
to leaving Shanghai (say, its large airport), and a component that is Beijing-Shanghai spe-
cific (say, the distance between the two, or number of train connections). This last bilateral
component is assumed to be symmetric for ease of proving the existence of an equilibrium.

Additionally, our model contains congestion forces (such as pollution and house prices)
and agglomeration (effects on TFP). The existence of multiple equilibria often depends
on the relative strength of agglomeration and congestion forces (Allen et al., 2020). An
equilibrium is unique if congestion forces are at least as large as the agglomeration forces.
That is, the parameters ψ1,ψ2, ψ3 and ψ4 that determine congestion are meaningful in
magnitude, relative to φ1 and φ2 that drive agglomeration. More skilled workers raise TFP
(via φ2), yet may lead to more congestion, via higher house prices (via ψ3 and ψ4) and more
pollution (via ψ1 and ψ2), which in turn may lower TFP (via φ1). Given the meaningful
congestion forces we may expect a unique equilibrium.

When solving for equilibrium, our model converges to the same unique equilibrium
across different starting values. This does not necessarily imply the equilibrium is globally
unique. Yet, like other work (Ahlfeldt et al., 2015) we envision that if there were to be mul-
tiple equilibria for a different set of parameter values, we would select the counterfactual
equilibrium closest to the observed real-world outcome.
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F Data Appendix
Pollution Data: In our baseline analysis, city-level annual PM2.5 concentrations are

measured using the Global Annual PM2.5 Grids derived from satellite data by Van Donke-
laar et al. (2016). We employ PM2.5 satellite data , since it has the following advantages.
First, official PM2.5 data were not available for most Chinese cities prior to 2012, and only
a subset of cities had access to official PM10 data prior to 2012. However, our satellite
PM2.5 data have been available since 1998 for all the cities in China. Second, fine particles
(diameter<2.5µm) are more hazardous than larger particles (2.5µm<diameter<10µm) in
terms of mortality, cardiovascular and respiratory endpoints, and PM2.5 is considered to
be the best indicator of the level of health risks from air pollution. 42 Finally, a potential
concern of the official air quality data is that it may be manipulated by the local government
(Ghanem and Zhang, 2014; Greenstone et al., 2020), however our satellite data are immune
to any underlying data manipulation.

Van Donkelaar et al. (2016) estimate ground-level PM2.5 by combining Aerosol Op-
tical Depth (AOD) retrievals from the NASA MODIS, MISR, and SeaWiFS, which are
subsequently calibrated to global ground-based observations of PM2.5 using Geographi-
cally Weighted Regression (GWR). The raster grids of this ground calibrated PM2.5 data
have a high grid cell resolution of 0.01 degree. This yields a comprehensive and reliable
measurement of air quality for a wide range of cities in China, covering all the prefec-
ture, sub-provincial and provincial cities. The correlation between satellite PM2.5 data and
monitor-based PM2.5 data in China is up to 0.8 (Freeman et al., 2019). Moreover, our
satellite-derived PM2.5 data cover periods before and after China’s disclosure of official
PM2.5 data, allowing us to analyze the migration reponse to the disclosure of pollution
information.

We use the Air Quality Index (AQI) released by Ministry of Environmental Protection
(MEP) for robustness checks. AQI is an overall indicator for air pollution concentration
calculated using multiple atmospheric pollutants including SO2, NO2, PM10, PM2.5, O3
and CO.

Migration Data: In our baseline analysis, we obtain data on individual migration de-
cisions from the 2015 Population Census of China. China conducts its population census

42see WHO report: http://www.who.int/mediacentre/news/releases/2014/air-quality/en/.
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every five years; the 2015 census is the latest census with restricted public access. The
census records a wide range of demographic and economic characteristics of individuals,
including age, gender, education, employment, hukou location, current residential city, and
marriage status. We limit the sample to the working age population. In the Census, mi-
grants are defined as those who are away from their hukou city for more than six months.
Hukou status determines citizens’ access to state-provided goods (such as schools for chil-
dren) and services (like marriage registries or passport renewals). Given the strong (forced)
attachment to one’s hukou city, when a person’s location of residence differs, it can be re-
liably characterized as migration.

In addition, we also construct an individual-level longitudinal panel using the China
Labor-force Dynamics Survey (CLDS) and use an alternative defination of internal migra-
tion to examine the robustness of our empirical pattern. The CLDS data record individual
histories of location changes for a sample of 21,086 individuals in 14,226 households across
29 provinces of China. A probability-proportional-to-size sampling (PPS) procedure based
on population size and administrative units is adopted to ensure that the survey is nation-
ally representative. As a result, the distribution of sample size across cities in the CLDS is
consistent with the geographic distribution of population in China. The CLDS is a national
longitudinal social survey, with detailed information on education, work and migration ex-
perience. Since the survey asks retrospective migration histories of each individual, we are
able to construct a longitudinal panel of location histories between 2008 and 2016. The
CLDS allows us to account for individual-specific unobservables, track those who have
moved multiple times and those who have moved and returned home. When we analyze
migration choices using the longitudinal panel data, we define migration to be an indicator
for whether an individual changed city locations between years, regardless of whether they
change their hukou status.

In this paper, we refrain from looking at within-city sorting for a few reasons: First,
the wage and local labor market are likely to consist of the larger city as a whole. And our
spatial structural model analysis aims to quantify the productivity consequences of moving
workers from high productivity to low productivity cities in response to relocating pollu-
tion. Second, within-city variation can only explain about 19% of the spatial dispersion of
air quality in China.
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Trade Data: Information on city exports and imports is derived from the China Cus-
toms Database, which covers the universe of Chinese exports and imports, and was har-
monized and generously provided by the University of California, Davis, Center for Inter-
national Data (Feenstra et al., 2018). We utilize information on the quantity and value of
exports classified by the Harmonized System for all international transactions from China.
The data reports the annual trade information on values, quantities, and partner countries
at the HS 8-digit level for all Chinese cities in the period under investigation (i.e., 1997 to
2014). As the industry classifications used in tariffs and the China Customs Database (i.e.,
HS 6-digit) are different from the one in the Annual Survey of Industrial Production (i.e.,
Chinese Standard Industrial Classification 4-digit), we correspond them to the International
Standard Industrial Classification (ISIC) Revision three at the 4-digit level to construct var-
ious trade shock measures in practice. We construct a city-level measure that captures the
differential impact of PNTR across Chinese prefecture cities based on their pre-2001 in-
dustrial activity. Existing industrial activity is measured by each industry’s share of total
city exports, prior to the conferral of PNTR, calculated from the China Customs Database.

Exports are categorized by the destination country and city of origin. The 4-digit city
codes provided in the customs data identify a level of geography more disaggregated than
the standard prefecture cities in China. Hence, we aggregate city codes in the customs
data up to the prefecture level, based on the reported city name. In the end, the original
479 city codes in the customs data are aggregated to 313 prefecture cities, including four
municipalities. We do not include exports categorized as process and assembly or process
with imported materials, given the heterogeneous response to such processing trade (Yu,
2015).

The tariff data comes from the Trade Analysis and Information System (TRAINS)
database, which is maintained by the United Nations Conference on Trade and Devel-
opment (UNCTAD). The raw tariff data is withdrawn with the simple average at the level
of country-HS 6-digit. For additional balance tests, we use data on contract intensity and
export licesnses. Using data from Nunn (2007), we measure industry contract intensity
in 1997 as the fraction of intermediate inputs employed by firms requiring relationship-
specific investments. We use data from Bai et al. (2017) on the fraction of export revenues
within an industry covered under export licenses in 2000.
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Data on IVs for Pollution: We obtain information on large-scale power plants, their
coal consumption, and plant-level electricity generation from China Electric Power Year-
book and China Energy Statistical Yearbook. As in Freeman et al. (2019), the large-scale
thermal power plants are defined as the thermal power plants whose installed-capacities are
larger than 1 million KW. We mannually collect information on the establishment year of
plants, the angle between their locations and annual prevailing wind direction of each city,
and the distance to each city.

We collect data on thermal inversions from the Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2), which records the 6-hour air tempera-
ture at different atmospheric layers. For each 6-hour period, we calculate the temperature
change from the first to the second above ground atmospheric layer. If the temperature
change is positive, a thermal inversion occurs and the difference in temperatures measures
the strength of thermal inversions. We calculate the annual occurrence and the annual sum
of thermal inversion strength from the 6-hour data.

Other Data: We collect data on baseline city characteristics from the City Statisti-
cal Yearbooks. The city characteristic varriables include population, GDP, total electricity
consumption, industrial electricity consumption, industrial structure (the product value at
service sector / manufacture sector), industrial SO2 emission, industrial waste water emis-
sion and industrial dust emission, teacher student ratio, the number of hospitals per capita,
and the number of doctors per capita.

We obtain data on weather amenities from China Meteorological Data Service Center.
Our weather condition variables include temperature, wind speed, sunshine duration and
humidity. We manually calcuate the distance from each city to Shanghai seaport, to Tianjin
seaport, and to Shenzhen seaport. Since the 2015 Census does not record individual-level
wages, we use the CLDS to calculate city-and-education specific average wage.

We measure city-level housing prices using yearly average data on housing rents from
the Xitai Real Estate Big Data depository. The data has been collected since 2005, and
covered 337 cities in collaboration with the China National Bureau of Statistics, and the
China National Development and Reform Commission. We compare these data to the
purchase price of residential properties from the statistical yearbooks, and find a correlation
of 0.93.
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We derive information from a large-scale university expansion in China at the turn of
the century that suddenly expanded college enrollment by 20% in certain cities, to identify
skilled-worker agglomeration effects. Data on the number of college students and graduates
at city level are from the China Regional Statistical Yearbook. We create measures of the
number of college graduates by city and year, and use the change in graduates from 2001-
05 (cohorts just before and after the university expansion policy) as our instrument for the
aggolomeration of skilled workers.
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