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Abstract

We characterize how firms structure supply chains under climate risk. Using new
data on the universe of firm-to-firm transactions from an Indian state, we show that
firms diversify sourcing locations, and suppliers exposed to climate risk charge lower
prices. Our event-study analysis finds that firms with suppliers in flood-affected
districts experience a decline in inputs lasting two months, followed by a return to
original suppliers. We develop a general equilibrium model of firm input sourcing
under climate risk. Firms diversify identical inputs from suppliers across space,
trading off the probability of a climate shock against higher input costs. We quan-
tify the model using data on 271 Indian districts, showing real wages vary across
space and are correlated with geography and productivity. Wages are inversely
correlated with sourcing risk, giving rise to a cost minimization-resilience tradeoff.
Supply chain diversification unambiguously reduces real wage volatility, but am-
biguously affects their levels, as diversification may come with higher input costs.
While diversification helps mitigate climate risk, it exacerbates the distributional
effects of climate change by reducing wages in regions prone to more frequent shocks.
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1 Introduction

The intersection of complex supply chains and climate risk presents a critical challenge to

the global economy. While complex supply chains have yielded significant efficiency gains

worldwide, enabling firms to procure inputs from the most efficient suppliers regardless

of their location, escalating climate risk raises concerns about the vulnerability of global

production networks and the ensuing broader economic fragility (Barrot and Sauvagnat,

2016; Boehm et al., 2019). Increasing global risk of climate change also heightens the like-

lihood of natural disasters such as flooding and storm surges. In response, forward-looking

firms may choose their production locations (Castro-Vincenzi, 2024) or diversify the loca-

tions of their suppliers based on geographic variability in climate threats to mitigate the

impact of disruptions to their productive activities. Therefore, our understanding of how

climate change may reshape economic production and its implications for welfare across

regions hinges on firms’ adaptive sourcing decisions in response to escalating hazards. In

this paper, we provide a theoretical, empirical, and quantitative analysis of the spatial

consequences of supply chain restructuring in light of increased climate risk.

Studying the general equilibrium consequences of how firms structure supply chains when

faced with climate hazards raises two important challenges. First, for empirical evidence

on how firms respond to climate risk, we need high-frequency data on transactions along

the supply chain, the precise locations of establishments, and meaningful variation in

weather-related events. Second, to quantify the broader economy-wide consequences, we

require a general equilibrium model of firm input sourcing under climate risk, where firms

face trade-offs such as the lower probability of climate shocks against higher-cost, less

productive inputs or higher shipping costs.

To address the first challenge, we obtain the universe of establishment-to-establishment

level transactions from a large state in India, as long as one node of the transaction (either

buyer or seller) is in the state (the other node can be anywhere in the country). This

dataset contains the precise zip code of the establishments, the value of the transaction,

the product code, the date, the quantity (and so the unit values), and the unique tax

ID of the establishment. Using these data, we document important new facts suggesting

firms are optimizing supply chains to mitigate climate risk. First, firms diversify the

locations they source from, even within narrow product codes. And second, firms that

multisource the same product buy from farther distances, dryer regions and pay higher

prices. Third, suppliers in regions that are more exposed to climate risk tend to charge

lower prices.

A key advantage of our setting is that India experiences monsoonal rainfall that follows a

somewhat predictable spatial pattern every year, although the intensity and timing can
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vary. Regions across India are regularly and increasingly experiencing large flooding events

that disrupt firm supply chains. Firms operating in this environment might reasonably

consider the probability of climate-related disruptions to their operations, as suggested

by our descriptive analysis.

To provide causal evidence of firm responses to climate shocks, we leverage the exogenous

geographic and temporal variation in flooding events using a staggered event study design.

We show that the sales of flood-hit suppliers fall drastically over three months but recover

by five months after a flood. Further, the total purchases of downstream buyers decrease

substantially, and they are unlikely to substitute to other suppliers. Yet, we detect no

change in the sales of these downstream buyers. Prices increase in the short run, but

once again recover. Importantly, we show no difference in affected and unaffected firms

in the pre-period. Our descriptive and event-study results together suggest firms plan

for climate-related risk and recover from the realized shocks relatively quickly. These

empirical patterns motivate and discipline our general equilibrium framework.

In addressing the second challenge of quantifying economy-wide impacts, we introduce a

new theory. We build a spatial general equilibrium model of firm sourcing under climate

risk. Motivated by our empirical results and the patterns in the data, firms diversify their

sourcing of otherwise identical inputs across locations to mitigate climate risk. Such diver-

sification comes with a trade-off: places with lower climate risk might be less productive,

or geographically distant, necessitating payment of higher trade costs.

A key feature of the model is that firms’ expected profit functions in the presence of

sourcing risk are concave in input orders. That is, firms behave as if they are risk averse,

even in the absence of explicit risk aversion in preferences. This implies that firms from

each region will choose to diversify their input sourcing across regions if they face het-

erogeneous shock probabilities, even in the extreme case where regional fundamentals

are constant across space, and trade is costly (a “symmetric” economy). In a compara-

tive statics exercise, we show that in this setting, there might be no conventional gains

from trade, but trade still occurs purely due to the diversification motives of firms. As

a result, despite identical fundamentals, “safer” regions see higher real wages in general

equilibrium, while more distant or riskier regions see lower real wages.

Interestingly, this comparative statics exercise implies that the prices of inputs and, there-

fore, of regional consumption, are higher under costly trade than regional autarky. A stark

insight from this exercise is that the average expected regional real wage is lower under

costly trade than under autarky, but its volatility is also lower. In other words, under

commonly used consumer preferences that do not explicitly have a role for the volatility

of real wages in welfare, in this exercise, costly trade is welfare decreasing. We show, how-
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ever, that free trade in the symmetric economy brings both the diversification benefits of

lower wage volatility and higher expected real wages compared to costly trade.

We quantify this model using a census of manufacturing firms across the country, allowing

us to estimate location-specific productivities and labor shares. We implement the model

on 271 districts in India. Our model implies that bilateral sourcing shares are a function of

all regional labor endowments, productivities, and bilateral trade costs, as well as the risk

of sourcing in each region. Given estimates of regional labor, productivity, and bilateral

trade costs, we back out model-implied regional risk that is necessary to fit observed

sourcing shares. To validate our framework, we project the model-implied risk on climate

observables such as rainfall and floods as well as other risk-related variables such as court

capacity to capture institutional features that affect firm decisions. We find that climate-

related risk is positively correlated with the estimated risk probabilities. The positive

correlation suggests that firms take into account several sources of risk when they form

their supply chains, a feature that has been largely ignored by the literature (an exception

is Kopytov et al. (2021) who study how supply chains adapt to supplier volatility).

While the comparative statics exercises provide stark analytical insights about the possible

impacts of diversification, the effects of firm diversification in a realistic economy will,

in general, depend on the variation in fundamentals and “standard” motives for trade,

such as geography and productivity in addition to risk-mitigation incentives. Our third

contribution is, therefore, quantitative: we compute expected real wages across districts in

our calibrated model, given model-implied sourcing risk. Our framework implies that as a

result of firm sourcing decisions, real wages in each district will depend on the geography,

productivity, and climate risk of all districts.

We perform several quantitative exercises in our calibrated model. First, we validate

the insight from our comparative statics exercises regarding wage volatility. We find

that under the estimated trade costs and climate risk, the variance of real wages is 77%

lower. On the other hand, expected real wages do not always have to be lower than in

autarky. In our calibrated model, they are on average 5% higher, although 11% of districts

see expected real wages that are lower than autarky. We then study how regional wages

change in general equilibrium under alternative shock probabilities to capture scenarios of

changing climate risk and to highlight our new channel. We map projections of changes in

flood risk and precipitation risk to our estimated probabilities and compute expected real

wages, input prices and wage volatility under the scenario of flood risk and precipitation

risk increasing as projected. We find that the average risk of districts increases by 0.38pp,

but there is wide heterogeneity. Expected real wages decline on average by 1%, but their

volatility also declines on average by 1.14%. Safer districts largely see expected real wage

increases. Our model and quantification show that firm sourcing decisions help mitigate
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the effects of climate shocks and have quantitatively important implications in general

equilibrium for real wages in safer regions relative to riskier ones.

Our results highlight two economic implications of climate change. On the positive side,

the risks of climate change are mitigated since firms anticipate climate risk and diversify

their sourcing decisions to minimize the volatility due to climate shocks. This implies

that more volatile weather does not necessarily translate into higher aggregate output

volatility. On the negative side, climate change will have even larger redistributive effects

across regions than commonly believed. Regions with more climate risk will face the

direct effects of the shocks themselves, but additionally will also become less appealing to

other regions as a source of inputs. As a result, demand for products from these regions

will decline, and real wages will fall. The converse will occur in “safer” regions. In other

words, diversification will amplify the distributional effects of climate change.

Related literature. A growing literature studies how climate change shapes economic

activity. Several papers focus on the long run, assessing how the distribution of economic

activity changes within and across regions, and countries (Bilal and Rossi-Hansberg, 2023;

Cruz and Rossi-Hansberg, 2023; Desmet et al., 2021; Hsiao, 2023; Jia et al., 2022; Nath,

2022). A smaller subset considers optimal medium-term policy responses (Balboni, 2021).

Another branch of the literature studies the effects of extreme weather events on firms’

employment and location decisions as well as on FDI (Castro-Vincenzi, 2024; Gu and

Hale, 2022; Indaco et al., 2020; Pankratz and Schiller, 2021). In this paper, we study the

general equilibrium impacts of endogenous firm supply network decisions under climate

risk. While we emphasize how firms can use their supply networks to mitigate the risk

of extreme weather events, our model is well suited to analyze the general equilibrium

effects of supply network formation under any location-specific risk.

While the responses of firm supply chains to climate risk have not received much at-

tention in the literature, closely related to our paper is parallel work by Balboni et al.

(2023), who study firm supply chains responses to flood events in Pakistan. While our

empirical strategies are broadly similar, our data vary in that they contain information

on establishment locations, detailed product codes, prices, and quantities, which enables

us to estimate responses of a rich set of variables to shocks. Our model studies sourc-

ing decisions and supply chains that are formed in anticipation of shocks, delivers strong

implications for how wages across space are shaped by regional risk, and can be used to

infer the risk that firms assign to different sourcing locations.

Our theoretical and quantitative results are also related to the insights in Kopytov et al.

(2021), who study supply chain adaptation to supplier volatility, and to Pellet and Tahbaz-

Salehi (2023), who study the implications of rigidities in supply chains that arise due to
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incomplete information. Caselli et al. (2019) show that diversification across sectors can

lower aggregate volatility in a quantitative trade model. Similar to the rigid inputs in

Pellet and Tahbaz-Salehi (2023), firms in our model place orders for intermediate inputs

prior to the realization of shocks, and cannot adjust their orders ex-post. In contrast to

these papers, our model features households in multiple regions who cannot trade shares

of the different firms, and the incentive to mitigate volatility arises from the concavity

of firm profits. As a result, in our framework, aggregate volatility decreases in openness

to trade, as firms mitigate risk. However, in our model, expected real wages can be

lower under costly trade compared to autarky. This parallels the results in these papers

that aggregate output is also lower due to diversification away from volatile suppliers.

We show, however, that eliminating trade barriers permits both expected real wages and

aggregate volatility to be lower, maximizing the benefits of diversification.

Supply chain fragility and resilience have received increased attention in the literature fol-

lowing the Covid-19 pandemic (Goldberg and Reed, 2023; Grossman et al., 2023; Khanna

et al., 2022). Our firm-to-firm data are similar to Khanna et al. (2022), but our identifi-

cation strategy uses extreme weather events, and we emphasize the adaptation of supply

chains to climate risk and the general equilibrium consequences, which are not studied

in that paper. Our empirical evidence indeed suggests that firm supply chain responses

to climate-related risk vary qualitatively and quantitatively from their responses to an

unanticipated, temporary shock like Covid-19.

Finally, we also build on a growing research agenda on how production networks respond

to shocks. A long literature documents the importance of international trade in inputs

and studies the macroeconomic consequences of such trade (Antràs et al., 2017; Caliendo

and Parro, 2015; Hummels et al., 2001; Johnson and Noguera, 2012, 2017; Yi, 2003). A

strand of this literature has emphasized the transmission of natural disasters through

trade and supply chain links (Barrot and Sauvagnat, 2016; Boehm et al., 2019; Carvalho

et al., 2021). In contrast to studying the responses of firms or sectors to the incidence

of shocks, we quantify the general equilibrium economy-wide consequences of firm supply

chain adaption to the (changing) probability of shocks.

The rest of our paper is structured as follows. Section 2 outlines our data, shows descrip-

tive patterns, and contains our event study analysis around flood events. Section 3 sets up

the model, derives some analytical results, and performs comparative statics. Section 4

calibrates and quantifies the model, while 4.4 contains the climate change counterfactuals,

and Section 5 concludes.
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2 Empirical Approach

2.1 Data

Firm-to-firm trade. Our primary data source is daily establishment-level transactions

(while we use the term “firm”, the data are at the granular establishment level). These

data are from the tax authority of a large Indian state with a fairly diversified produc-

tion structure, roughly 50% urbanization rates, and high population density. Comparing

this context to other contexts with firm-to-firm transaction data, we observe that the

state has roughly three times Belgium’s population, seven times Costa Rica’s, and double

Chile’s.

The data contain daily transactions from April 2018 to October 2020 between all registered

establishments within the state, and all transactions where one node of the transaction

(either buyer or seller) is in the state. All transactions have unique tax identifiers for both

the selling and buying establishments, which include the value of the whole transaction,

the value of the items being traded by 8-digit HSN code, the quantity of each item, its

unit, and transportation mode.

Each transaction also reports the zip code location of both the selling and buying estab-

lishments, which we merge with other geographic data. By law, any goods transaction

with value over Rs.50,000 ($700) has to generate eway-bills, which populate our data.

Transactions with values lower than $700 can also optionally be registered. As such, our

network is representative of relatively larger firms, but the threshold is sufficiently low to

capture small firms as well. More information is in Appendix C.1, with summary statistics

in Table A1.

We use the data to construct the buyer-supplier network every period and the total value

of inputs purchased and output sold by firms. To obtain a measure of real inputs and

output, we use the reported quantity of each transaction to calculate unit values for each

product, construct a price index, and deflate the total firm-level input purchases and

sales. Our output measure is noisier than inputs, given that we do not observe direct-to-

consumer sales. Therefore, whenever using output as an outcome, we restrict the sample

to firms with positive sales every period before the flooding event began.

Climate data. We use data from the Dartmouth Flood Observatory to identify geocoded

flooding events throughout India for our event study analysis. As shown in Figure 1, we

identify 19 events of monsoonal rain throughout India between 2018 and 2021. For our

event study analysis, we limit the set of floods to those that occurred outside of our state,

and that caused at least 100 individuals to be displaced by the flood. These restric-

tions leave us with seven large flood events, which we use in our analysis in Section 2.3.
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Figure 1: Monsoonal rain floods, 2018-2020

Note: The figure plots the geographic coverage of all large floods that occurred between 2018 and 2020,
as described in the Dartmouth Flood Observatory.

We complement the climate-related datasets with information on district-level historical

and projected daily rainfall, coastal flooding, riverine flooding and average temperatures.

Details on this data can be found in Appendix C.1.

2.2 Descriptive Analysis

To begin our analysis, we document four facts related to supplier diversification and

climate risk to motivate the key features of our model.

Fact 1: Even within narrow product categories, there is a significant mass of

firms that source the same product from multiple regions.

We take advantage of the detailed product information in our transaction data and com-

pute the number of districts a firm sources a given product from. As shown in Table 1

Column 1, 63% of the firms in our data buy from more than one district. In columns

2 to 4 we show that a significant fraction of firms also multisource the same product

across regions. We compute the number of districts a firm-by-HSN product code pair

sources from. In Column 2, we use 2-digit product codes; in Column 3, we use 4-digit

product codes; and in Column 4, 8-digit product codes. Even with the narrowest prod-

uct definition available in our data, 17.4% of firms source the same product from more

than one district. This is evidence that a significant fraction of firms multisource their

products.

Fact 2: Firms that have larger purchases of a given product are more likely
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Table 1: Share of firms that source from multiple districts

Number of supplier
districts

Share of buyers
Share of buyers

x HSN 2
Share of buyers

x HSN 4
Share of buyers

x HSN 8

1 36.9% 65.8% 74.8% 82.6%
2 20.0% 16.2% 13.3% 9.7%
3 11.8% 6.4% 4.4% 2.3%
4 7.5% 3.1% 1.8% 0.8%
5 5.1% 1.7% 0.9% 0.4%
6 3.6% 1.1% 0.5% 0.2%
7 2.6% 0.7% 0.3% 0.1%
8 1.9% 0.4% 0.2% 0.1%
9 1.5% 0.3% 0.1% 0.1%

+10 9.2% 4.2% 3.7% 3.8%

Note. Column 1 aggregates the data at the firm level and computes the share of firms that source from a
certain number of districts. Column 2 aggregates the data at the firm-by-2-digit product level, Column
3 at the firm-by-4-digit product level, and Column 4 at the firm-by-8-digit product level.

to source from multiple regions.

We rank all firm-by-8-digit HSN pairs into percentiles, based on total purchases, where

the higher percentiles include the firm-product pairs with the higher purchase volume.

As shown in Figure 2, the smallest firm-product pairs tend to only source from a single

supplier. However, towards the end of the distribution, the largest firm-product pairs

source, on average, from more than one region. Firms above the 95th percentile source,

on average, from two districts, and firms in the top percentile source from four. This

suggests that larger, more productive firms are more likely to multisource.

Fact 3: Firms that multisource more tend to buy products from farther dis-

tances, slightly dryer regions, and pay higher input prices.

Once again, we focus on firm-product pairs using the 8-digit product classification. In

Figure 3a, we show that firms that source the same product from more regions tend to

buy from suppliers that are farther away. For instance, firm-product pairs that source

from one district have an average distance of 350 km to suppliers. On the other hand,

firm-product pairs with five suppliers per product have an average distance of almost

double, at 700 km.

In Figure 3b, we also show that firm-product pairs with more suppliers also seem to

source from less rainy districts. For firm-product pairs that source from one district, such

districts have, on average, a 10.9 mm daily rainfall. On the contrary, for firm-product pairs

that source from five districts, such districts have, on average, 10 mm of daily rainfall.

The average daily rainfall across all Indian districts is 8.11 mm, so the difference between

those sourcing from one versus five districts is 11% with respect to the mean.

Finally, in Figure 3c, we show that firms that source from more districts also tend to pay
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Figure 2: Number of supplier districts by total purchases

Note. We rank all firm-product pairs into percentiles (1-100) based on the volume of total purchases
in 2019. For each percentile (in the horizontal axis), we compute the average number of districts the
firm-product pairs source from.

higher prices for their inputs. To compute average prices, we first run a regression of log

price on product fixed effects, and standardize the residual of such regression to construct

our residual price index. We then normalize the average price for those firms that source

from only one region to one. As shown in Figure 3c, firms that source from 5 districts pay

an average price that is 0.6 standard deviations higher than firms that source from only

one district. The average price paid monotonically increases with the number of districts

sourced from.

Fact 4: Supplier districts that face higher climate risk charge lower prices.

Figures 3b and 3c suggest that as buyers purchase from more suppliers, they source from

regions with lower climate risk and pay higher prices. The flip side of this pattern is

that suppliers in riskier areas might charge lower prices. To investigate this relationship

further, we run a regression at the buyer (j) - supplier district (d) - product (p) level as

in equation 1.

log(Price)j,d,p = α1 log(Climate risk)d + α2 log(Distance)j,d + α31(j in d)+

α41(j, d in same state) + γXd,p + δj + δp + ϵj,d,p ,
(1)

where log(Price)j,d,p is the log of the average price charged to buyer j for product p by

suppliers in district d. We control for the distance between j and d, indicators on whether

the buyer is in district d or the same state as district d, and a set of controls at the
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Figure 3: Supplier characteristics by number of districts sourced from

(a) Distance to suppliers (b) Average rainfall (c) Average price of inputs

Note. In the left panel, we compute the average distance between the firm and each of its suppliers from
our transaction data. We then compute the average distance across firm-product pairs sourcing from 1 to
5 districts. In the middle panel, for each firm-product pair, we compute the average daily rainfall at each
of the districts the firm sources from. Daily rainfall comes from the India Meteorological Department.
We then compute the average across all firm-product pairs sourcing from 1 to 5 districts. In the right
panel, we compute the average price paid for inputs for firm-product pairs sourcing from 1 to 5 districts.
To construct our price index, we first run a regression of log prices on product fixed effects and take the
residual. We standardize the residual and normalize it to 1 for firm-product pairs that source from only
one district.

product-supplier district level (Xd,p) such as the log size of all supplier sales from that

district-product pair and the log of the total sales from that district. We also include

buyer and product fixed effects, so the identification of the climate variables comes from

firms that buy from multiple districts. Additionally, we include covariates that aim to

capture market power at the supplier district, such as the log of the total number of

suppliers for a given product in the district and the log of the largest supplier market

share for that product in the district.

We consider two climate risk measures: the average daily rainfall for each district in 2019

and the historical river flooding in each district. Details on how these climate variables

are computed can be found in Appendix C.1. As shown in Table 2, both climate measures

are negatively correlated with prices. The magnitudes are robust to including additional

controls at the supplier-district level. A 10% increase in rainfall in a district, is associated

with suppliers in those districts charging 0.11% lower prices. Similarly, a 10% increase

in riverine flooding levels in a district is associated with 2.55% lower prices charged by

suppliers in that district. While these results cannot be interpreted as causal, they are

suggestive that riskier areas do charge lower prices.
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Table 2: Correlation between price and supplier district climate risk

Log (Price)j,d,p Log (Price)j,d,p Log (Price)j,d,p Log (Price)j,d,p

Log(Avg Daily Rainfall in d) -0.0179*** -0.0112** Log(Avg River Flooding in d) -0.381*** -0.255***
(0.005) (0.005) (0.026) (0.026)

N obs 991,802 991,802 N obs 996,720 996,720
Additional controls No Yes Additional controls No Yes

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run a cross-sectional regression at the firm (j), supplier
district (d), 8-digit product (p) level. The outcome is the log of the average price charged by suppliers in
district d, to firm j for product p. The first and third columns control for log average distance between
j and suppliers in d, a dummy variable for whether j is in district d, a dummy variable for whether j
is in the same state as d, the log of total sales in product p from suppliers in d, the log of total sales of
suppliers in d across all products, buyer fixed effects and product fixed effects. Columns 2 and 4 include
additional controls for the log number of suppliers for product p in d and the log market share of the
highest supplier in product p. Climate variables used are average daily rainfall in district in 2019 (left
panel) and historical riverine flooding levels in district (right panel).

2.3 Event-Study Analysis

We proceed by documenting how firms respond to climate-driven supply chain disruptions.

We leverage the timing of these unexpected weather shocks to examine how sales and

purchases change in the lead-up to and right after the shock. Our goal is to isolate the

effect of the shock from other determinants that drive changes in sales and purchases.

Our event-study analysis allows us to examine pre-trends in the lead-up to the shock,

and dynamics thereafter. The absence of pre-trends may provide suggestive evidence that

our parallel-trends identification assumption is likely to hold, whereas the post-shock

dynamics are informative of how long it takes for firms to recover after the flood.

First, we study how the shock directly affected suppliers in flood-hit regions. Then, we

use the existing supplier network (in the pre-shock period) as a measure of the exposure

to the shock, to study how buyers were affected when their suppliers were hit. Intuitively,

we want to compare two firms that face the same trends in demand and productivity and

only differ in the location of their suppliers. By comparing the observed disruptions of

a firm whose suppliers were more exposed to floods with a similar firm whose suppliers

were less exposed, we can isolate the impact driven by supply chain disruptions.

Effects on suppliers in flood-hit regions. We begin with documenting the direct

effect on suppliers in flood-hit zones with the specification, where we examine outcomes

yj,t,k,τ for firm j, in period t, and industry k, measured in event-time (since flood) τ :

yj,t,k,τ =
x=+5∑
x=−5

[αx1 (Exposed to flood)jτ + δτ,x + βxXj,τ0−1] + δj + δk,t + ϵj,t,k,τ . (2)

Here, the variable “Exposed to floodjτ” takes a value of 1 if firm j was exposed to a
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particular flood. We include a wide range of high-dimensional fixed effects to account for

confounding shocks. These include firm fixed effects δj that control for firm-specific time-

invariant differences; industry-by-time fixed effects δk,t that control for industry-specific

shocks; and flood event-time since flood fixed effects δτ,x that control for aggregate trends

around the flood event that affect all firms (including those not in the flood-exposed

areas). We also control for firm size-specific shocks, by controlling for purchases in the

pre-period Xj,τ0−1, interacted with time-since flood indicators. The sample consists of

firms that had positive sales in the month before a flood.

Figure 4 plots αx, which are time dummies that capture the differential impacts on firms

that were directly exposed to the flood, relative to other (non-flood-hit) firms that had

positive sales in the month before a flood. The figure shows a lack of meaningful pre-

trends in the lead-up to the flood. After the flood, there is an immediate decline in sales of

0.11 log points, which worsens until two months after the flood. About two months after

the flood, sales are about 0.25 log points lower than baseline sales. After the two-month

slump in sales, there is a quick recovery, and four months after the flood, sales recover to

what they were in the pre-period.

Figure 4: Sales of affected suppliers

Note. Event-study specification documenting sales of firms that were exposed to floods in month= 0.
The specification includes firm, time, event-time, and industry-real time fixed effects, and log pre-period
sales-time controls. Standard errors clustered at the district level.

Effects on downstream firms. To examine how buyers are affected, we need to first

define a buyer’s exposure to the floods. We define a firm j’s supplier exposure to be how

exposed its suppliers were to the flood:

(Supplier Exposure)jτ =
N∑
i

si,j,τ0−1 × 1 (Supplier i exposed to flood in τ) ,

where si,j,τ0−1 is the value of purchases that firm j buys from firm i, relative to firm

j’s total purchases, just before the flood. The index, essentially, calculates the weighted
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average of the flood exposure of firm j’s sellers. A higher value of the index implies firm

j faces a higher “supplier-exposure,” as a larger share of its purchases were coming from

firms exposed to the flood. The exposure measure has a mean of 0.018 and standard

deviation of 0.1.

With the help of this variable, we can now study the outcomes yj,t,k,τ of downstream firms

j in period t, industry k, and time-since flood τ :

yj,t,k,τ =
x=+5∑
x=−5

[γx (Supplier Exposure)jτ + δτ,x + βxXj,τ0−1] + δj + δr,k,t + ϵj,t,k,τ . (3)

Once again, we control for firm-specific time-invariant factors δj; industry-by-district-

by-time fixed effects δk,r,t that control for industry-by-region specific shocks; and flood

event-time since flood fixed effects δτ,x that control for aggregate trends around the flood

event that affect all firms. Xj,τ0−1, interacted with time-since flood indicators, controls

for firm size-specific shocks.

Figure 5: Purchases and sales of downstream firms

Note. Event-study specification documenting sales and purchases of downstream firms that were exposed
to floods in month= 0. The specification includes firm, time, event-time, and industry-district-real time
fixed effects, and log pre-period sales-time controls. Standard errors clustered at the district level.

Figure 5 plots coefficients γx, which are time indicators that capture the differential out-

comes (sales or purchases) of downstream firms with higher supplier risk. Once again, the

coefficients in the pre-periods do not display any meaningful trends, suggesting that per-

haps high- and low-exposed firms had similar trends, at least in the pre-flood period.

Consistent with Figure 4, we find that purchases decline sharply for the first few months,

and then start to recover. Purchases are the lowest at two months after the flood dropping

by 0.078 log points with respect to the baseline period, for every one standard deviation

increase in the supplier exposure (standard deviation of exposure is 0.1). Purchases recover

to the pre-period levels by four months after the flood. This pattern follows closely with

what happens to the sales for directly affected suppliers in Figure 4. We later revisit this
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estimate to calibrate how inputs our disrupted in our model quantification.

Interestingly, however, Figure 5 also shows that the sales of downstream firms are rela-

tively modestly affected and only decrease by 0.009 log points the month following the

flood, for a 1SD increase in exposure. This rebounds quickly. Inventories of output or in-

termediate inputs could explain this divergence in the effects on output relative to inputs.

Unfortunately, our data do not contain information on inventories, so we cannot empiri-

cally assess their role here. We develop a model extension in Appendix B.3, illustrating

how intermediate input inventories can generate a divergence in the response of sales and

inputs following a shock, consistent with the patterns here.

New suppliers vs. existing suppliers. Suppliers that are hit by temporary shocks

may induce buyers to seek out new suppliers. We compare what happens to purchases

from new suppliers and existing suppliers in Figure 6 to examine this switching behavior.

The blue line shows that, if anything, there is a temporary fall in purchases from new

suppliers as well. There is, as expected, a meaningful fall in purchases from existing

suppliers, which recovers strongly eventually. In general, buyers are unlikely to create new

links, and they instead revert back to their existing suppliers after the shock abates. These

patterns are consistent with evidence from the same context that highlights how buyer-

supplier relationships are personalized as relationship-capital is important (Cevallos Fujiy

et al., 2023), and as a result, firms are unlikely to switch to other suppliers in the face of

temporary shocks (Cevallos Fujiy et al., 2021).

Figure 6: Purchases from existing or new suppliers

Note. Figures include firm, time, event-time, and industry-district-real time fixed effects, and demand
controls and log pre-period purchases-time controls. Standard errors clustered at the district level.

Products and prices. An advantage of our version of the firm-to-firm trade data is that

it has detailed product codes and unit values. This allows us to examine product-specific

trades and changes in prices as a result of upstream suppliers being exposed to a shock.

We first transform the data to the buyer-by-product-by-time level. Figure 7a shows the
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results of shocks to upstream suppliers on the sales and purchases of downstream buyers.

Our specification is similar to Equation 3, but with a product dimension that allows us

to include event-time, industry-district-product-time, and firm-by-product fixed effects,

along with controls for pre-period firm-by-product sales interacted with time indicators.

Figure 7a shows similar patterns to before: downstream purchases fall, even as sales of

downstream firms do not change substantially.

Figure 7: Product-level trade and prices

(a) Product-Level Purchases and Sales (b) Changes in Prices

Note. Figure 7a includes event-time, industry-district-product-time, and firm-by-product fixed effects,
along with controls for pre-period firm-by-product sales interacted with time indicators. Figure 7b in-
cludes product-time, firm-product, and event-time fixed effects. Standard errors clustered at the district
level.

In Figure 7b, we study the evolution of product-specific prices for transactions that occur

around the flood. While noisier, there seems to be an increase in price levels two months

after the flood, but they recover and return to the baseline levels four months since the

flood event.

New advances in two-way fixed effects methods. Recent econometric advance-

ments in two-way fixed effects methods point out that staggered treatment can lead to

the negative weighting of certain disaggregated treatment effects (Goodman-Bacon, 2018).

New methods developed by Borusyak et al. (2021); Callaway and Sant’Anna (2020); Sun

and Abraham (2020) provide consistent and interpretable estimates. Yet, our setting of-

fers some further challenges. Our “treatment” (index) is continuous, turns “off” and “on”

and perhaps “on” again, and our specifications control for various time-varying covariates,

and a wide variety of other fixed effects, making none of these new advances a suitable

benchmark in our setting. A new Local Projections Difference-in-Differences (LP-DID)

estimator developed by Dube et al. (2023) allows us to recover interpretable estimates in

a flexible and efficient manner.

We present the results from this LP-DID estimator, which show similar patterns. In

implementing this method, we need to take a stand on using the continuous treatment

variable, or a more conventional discretized one. We first study purchases for buyers
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Figure 8: Linear Projection DID: Purchases for Buyers

(a) LP-DID Continuous (b) LP-DID Discrete

Note. Specification includes firm, flood, and industry-district-month fixed effects. Controls include log
pre-period purchases interacted with time indicators. Figure 8b discretizes the treatment variable, by
being equal to 1 if more than 5% of weighted purchases were from affected suppliers. Standard errors
clustered at the district level.

in Figure 8a using the continuous treatment variable. In Figure 8b, we discretize the

treatment variable, and once again reproduce the same pattern as before: purchases fall

for the first few months, and thereafter recover by month 4.

Figure 9: Linear projection DID: other outcomes

(a) Sales of Affected Suppliers (b) Buyer Purchases from Suppliers

Note. Figure 9a includes firm, flood, and month-by-industry fixed effects. Figure 9b includes firm, flood,
and industry-district-month fixed effects. Controls include log pre-period purchases interacted with time
indicators. Figures discretizes the treatment variable by being equal to 1 if more than 5% of weighted
purchases were from affected suppliers. Standard errors clustered at the district level.

The results from the LP-DID method qualitatively resemble our main results for all other

outcomes as well. Figure 9a shows the sales of affected suppliers, and Figure 9b contrasts

existing vs. new suppliers. These patterns once again show that sales of affected suppliers

fall, and that purchases from buyers decrease from both new and existing suppliers.

3 Model

This section develops a spatial general equilibrium model of firm sourcing under risk and

performs comparative statics. Section 4 calibrates and quantifies the model.
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3.1 Setting.

The economy consists of I regions. Each region is endowed with Li workers, a unit

continuum of final goods producers who produce nontraded final goods, and competitive

intermediate goods producers.

Timing. The model is static and consists of two stages. In the first stage, final goods

producers in each location i place their orders for intermediate inputs from location j,

Mji. In the second stage, inputs are produced, sourcing disruption shocks are realized,

and then inputs are delivered. Final goods firms choose their labor inputs and produce,

households supply labor and consume, and all markets clear at equilibrium prices.

Households. The household in region i supplies labor Li inelastically to firms in i and

consumes a CES aggregate of the non-traded regional final goods qi with elasticity of

substitution σ > 1. It solves

max
qi(ω)

(∫
ω∈[0,1]

qi(ω)
σ−1
σ dω

) σ
σ−1

such that ∫
ω∈[0,1]

pi(ω)qi(ω) = wiLi , (4)

where pi (ω) is the price of final good qi (ω), and wi is the wage in region i. Our baseline

model assumes labor is immobile across regions.

Intermediate goods producers. In each region, there are a continuum of competitive

suppliers of tradable intermediate inputs Mi with production function Mi = ziℓ
M
i , where

zi is their productivity. The price of intermediates in i is equal to their constant marginal

cost, pMi = wi

zi
.

Let pMji denote the price of intermediates from j used in i. We assume iceberg trade costs

τji between regions. No arbitrage in shipping implies that the price “at the factory gate”

and the price at the time of intermediate usage are related by: pMji = τjip
M
j .

Final goods firms. Each region i contains a unit continuum of homogenous final goods

producers that produce differentiated varieties ω. Final goods are not tradable across

regions. The constant returns to scale production function of the firms is

qi(ω) = ϕiℓi(ω)
βxi(ω)

1−β , (5)
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where ϕi is the productivity of final goods’ producers in location i, ℓi(ω) is the firm’s

labor input, and intermediates xi(ω) can be sourced from each region j ∈ I as perfect

substitutes:1

xi(ω) =
∑
j∈I

xji (ω) .

Second stage. In the second stage, final goods firms have already placed their orders of

intermediates Mji (ω), shocks have been realized, and production takes place. The profit

maximization problem of a final goods firm in i in the second stage is

max
qi,{xji}Ij=1,ℓi

[
YiPσ−1

i

] 1
σ qi (ω)

σ−1
σ − wiℓi(ω) (6)

such that xi (ω) =
∑
j∈I

xji(ω) (7)

xji(ω) ≤ χjMji(ω) ∀ j , (8)

and the production function (5). Here, Yi is income, and Pi is the price index in region

i. χj ≤ 1, j ∈ I are the shock realizations. We assume the shocks destroy some of the

orders of inputs Mji that have been placed in the region in the first stage, and so if a

shock materializes, the firm receives fewer inputs than its order. This captures the notion

of climate-associated shocks such as rainfall or floods, and we will calibrate the shock size

to match our event study estimates in Section 2.3. We assume the stochastic shocks are

origin-specific, and so they affect orders of inputs from all buying regions. As the shocks

are not idiosyncratic, they will potentially affect aggregate outcomes.

Note that as second-stage profits (6) are monotonically increasing in input usage xi(ω),

the firm will always optimally use all available inputs that are delivered of its orders

Mji (ω). In other words, Equation (8) will always hold with equality.

The first order conditions of the firm’s second stage problem (6) pin down a firm’s optimal

choices of labor li, as well as its price pi, quantity qi, and profits πi as a function of the

vectors of first stage orders Mi = {Mji}Ij=1 and origin-specific shocks, χ = {χj}Ij=1. In

particular, the expression of profits for a firm in region i, suppressing the variety index ω

for concise exposition, is:

1Alternatively, we could also use an aggregator of K varieties of inputs, where inputs of the different
regions are perfect substitutes within a variety. For simplicity, our baseline model uses a single “variety”
of input that can be sourced from multiple regions.
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πi(Mi;χ) =

[
σ(1− β) + β

β(σ − 1)

] [
β(σ − 1)

σ

] σ
β+σ(1−β)

w
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i

∑
j∈I

χjMji

(1−β)(σ−1)


1
β+σ(1−β)

.

(9)

First stage. In the first stage, prior to the realization of shocks, final goods producers

in all locations choose their orders Mji of inputs to maximize expected profits. Firms

have rational expectations and make their input sourcing decisions based on the true

joint distribution of origin-specific disruption shocks, G(χ).2 The firm’s problem in stage

one is

max
Mi≥0

Eχ (πi(Mi;χ))−
∑
j∈I

pijMji , (10)

where pij is the order cost of inputs from j in i, and πi(Mi;χ) is as in Equation 9. The

first order conditions of this problem are

Eχ

χjΘi

[∑
j∈I

χjMji

] −1
β+σ(1−β)

 ≤ pIj ∀ j , (11)

where Θi =
[
(1−β)

β

] [
β(σ−1)

σ

] σ
β+σ(1−β)

w
β(1−σ)

β+σ(1−β)

i

[[
YiPσ−1

i

]
ϕσ−1
i

] 1
β+σ(1−β) is a function of equi-

librium aggregates that are potentially stochastic, as Yi, wi, and Pi might depend on the

shock realizations across regions.

These first order conditions highlight that when placing an order for intermediate inputs

of a given origin j, firms equate marginal benefits and marginal costs. Moreover, this

optimality condition elucidates under which circumstances the firm does not source from

a particular location. This occurs if the expected marginal benefit from placing an in-

finitesimal order in location j, with optimal orders elsewhere, is strictly smaller than its

price, pIj .

Proposition 1 Ex-ante profits are concave in orders of inputs Mji.

Proof. See Appendix B.

This property of the firm’s problem is important for the firm’s optimal sourcing strategy.

Interestingly, it implies that the firms behave as if they are risk averse, even without

2In our empirical implementation of the model, we assume that these shocks are binary, occuring with
probability ρi in each location i, and independent across regions. However, our quantification of the
model can accomodate alternative shock structures and spatially-correlated shocks.
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explicit risk aversion in consumer or managerial preferences. In fact, firms are fundamen-

tally risk-neutral. As a result, the “risk-aversion” through the concavity in profits will

imply firms will optimally diversify sourcing locations.

3.2 Ex-Post General Equilibrium

In the second stage, shocks are realized, inputs are delivered across regions, and all goods

and labor markets clear. The labor market clearing condition for each region i is

Li −
M̄i

zi︸ ︷︷ ︸
L̃i, Final goods labor

=

β(σ − 1)

σ

1

wi

[
YiPσ−1

i

] 1
σ

ϕi

∑
j∈I

χjMij

1−β


σ−1
σ


σ

β+σ(1−β)

, (12)

where L̃i is the labor used in the production of final goods in i, and M̄i

zi
is the labor used

in the production of M̄i =
∑J

j=1 τijMij intermediates to ship to all regions j ∈ I from

region i.

Goods markets clear in each region implying that the region’s income is equal to its

expenditure

Yi = wiLi + Π̂i , (13)

where Π̂i are the aggregate profits in i of the final goods firms as in Equation (6) less

their intermediate goods order costs

Π̂i =

∫
πi(ω)dω −

∫ ∑
j

pIijMij(ω)dω. (14)

Notice that we assume firms pay for their orders of intermediate inputs, not for the fraction

they receive after the shock. Additionally, Equation (12) implies that the full quantity

of intermediates ordered in stage 1 is produced. This implies that the shocks “destroy” a

fraction of produced inputs.3

Features of the equilibrium. As all firms in a region are homogeneous, under the

unit mass of firms assumption, the regional price index Pi = pi, and aggregate profits

Π̂i = π̂i. We can then characterize several features of the equilibrium.

3We do not observe actual contracts between firms in the data, so we have to make an assumption
regarding what fraction of the orders of inputs are paid for. Our setup would remain tractable under
alternative assumptions, e.g. only a fraction of the order is paid for upfront. While that would change
the input costs entering Equation (10), it would not change the concavity of first stage profits in order
costs, which is the key mechanism for firm input diversification in this framework.
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Lemma 1 Aggregate profits are a constant fraction of labor income Π̂i =
1

σ−1
wiLi. Fur-

ther, aggregate expenditure on materials in i is given by

∑
j

pIijMij =
(1− β)(σ − 1)

σ
Yi. (15)

Proof. See Appendix B.

These properties imply that aggregate income in location i is given by

Yi =
σ

σ − 1
wiLi, (16)

and that the share of labor used in producing final goods in region i is constant

L̃i

Li
= β. (17)

Equation (17) has strong implications for equilibrium wages. In particular, equilibrium

wages need to be such that the remaining workers are allocated to the intermediate inputs

sector in stage 1.

Lemma 2 Equilibrium wages wi are deterministic.

Proof. See Appendix B.

In the ex-post general equilibrium, the expression for Θi which is part of the marginal

contribution to profits of a marginal unit of Mij (Equation 6) is given by the following

expression

Θi = (1− β)wiLi

(∑
j∈I

χjMji

)− (1−β)(σ−1)
β+σ(1−β)

.

This implies that Θi is stochastic from the perspective of firms in stage 1. In fact, the

only aggregate variable that is stochastic, varying with the realization of shocks, is the

ideal price index, Pi.

3.3 Ex-Ante General Equilibrium

As pointed out above, the vector of wages in each location, is deterministic and deter-

mined at the first stage. Since aggregate labor demand by final goods’ producers is a

constant fraction of the labor endowment, L̃i = βLi, wages must be such that intermedi-

ate goods producers employ (1 − β)Li workers in input production. In turn, due to the

linear technology assumption, it must be the case that in equilibrium, the production of
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intermediates in each location is equal to Mi = (1 − β)ziLi. In the equilibrium of this

economy, the vector of wages,{wi}Ii=1, must be such that total demand from intermediate

goods producers in each region exactly equals this amount.

From re-arranging the trade balance and the optimal total intermediates expenditure con-

ditions, one can derive the following equilibrium system, which generates the equilibrium

vector of wages,

wjLj =
∑
i

wiLisji({wi}Ii=1) ; sji({wi}Ii=1) =

wjτji
zj

Mji({wi}Ii=1)∑
ℓ
wℓτℓi
zj

Mℓi({wi}Ii=1)
∀ j ∈ I,

where crucially, the matrix of sourcing shares defined by
{
sji({wi}Ii=1)

}I

i=1,j=1
is a function

of the vector of wages, the parameters of the model and the probability distribution of

the shocks.4 This completes the description of the economy.

3.4 A Two Location Example

To gain intuition, consider a simple case with two locations. Region 1 is risky and receives

a shock χ1 < 1, with probability ρ, and region 2 is a safe location.5 Additionally, there

are no trade costs, and therefore, the optimal intermediate bundle chosen by firms is the

same in both locations.

We further assume that intermediates are cheaper in the risky location, that is pI1 < pI2.

Notice that this must hold in equilibrium, because otherwise, the safe location dominates

the risky location, and the labor market will not clear in the risky location.6

The optimal stage 1 sourcing choices of firms in all regions from both regions i ∈ 1, 2

is

Mi1 : ρχ1Θ
S
i [χ1Mi1 +Mi2]

−1
β+σ(1−β) + (1− ρ)ΘNS

i [Mi1 +Mi2]
−1

β+σ(1−β) = pIi1 (18)

Mi2 : ρΘ
S
i [χ1Mi1 +Mi2]

−1
β+σ(1−β) + (1− ρ)ΘNS

i [Mi1 +Mi2]
−1

β+σ(1−β) = pIi2 , (19)

where ΘS
i = (1−β)(σ−1)

σ
Yi (χ1Mi1 +M2)

− (1−β)(σ−1)
β+σ(1−β) and ΘNS

i = (1−β)(σ−1)
σ

Yi (Mi1 +M2)
− (1−β)(σ−1)

β+σ(1−β) .

As discussed above, Θi is stochastic, and depends on whether or not the shock materi-

alizes in region 1. Under the monopolistic competition assumption, all firms take these

4Similar non-linear systems of equations in wages appear in several static trade models. Note that
here, the system includes orders of intermediates Mij which are also equilibrium objects and do not have
a closed form solution.

5That is, E1
χ = ρχ1 + (1− ρ) and E2

χ = 1.
6The fact that in this simple case, we have an interior solution for firms in both locations does not

hold in general when there are multiple locations and trade costs.
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aggregates as given. Plugging these shifters into the first order conditions of the firms,

we can solve for optimal orders as a function of wages:

Mi1 =
(1− β)(σ − 1)

σ
Yi

[
1− ρ

pIi1 − χ1pIi2
− ρ

pIi2 − pIi1

]
(20)

Mi2 =
(1− β)(σ − 1)

σ
Yi

[
ρ

pIi2 − pIi1
− (1− ρ)χ1

pIi1 − χ1pIi2

]
. (21)

Let wages in the less risky region 2 be the numeraire. As intermediates are priced at

marginal cost and from the labor market clearing condition (Equation 12), a constant

fraction of labor is used in the production of intermediates, we can show that equilibrium

wages in the risky region 1 are given by

w1 =
z1
z2

z1L1χ1 + z2L2(1− ρ(1− χ1))

z1L1(ρ+ χ1(1− ρ)) + z2L2

. (22)

3.5 Comparative Statics

For a larger number of regions, the model does not have an analytical solution. Prior to a

full calibration to districts in India in Section 4.2, we first illustrate the model’s properties

in a stylized 3-region setting.

To narrow the focus to the role of varied risk across space in firm sourcing decisions,

we assume the regions are homogenous in the productivity of their firms ϕi, their labor

endowment Li, and the productivity of their intermediate goods producers zi. Trade is

costly between regions and increasing in distance with elasticity 0.1. Finally, we assume

that if a shock occurs, 90% of the inputs ordered are destroyed (χ = 0.1).

We consider two situations. First, we look into the case where the three locations are

equidistant from each other. Second, we allow for regions to also vary in their distance to

each other. The results for the first scenario highlight how firms diversify their suppliers

without the feature that some suppliers are closer than others. The second adds geography

as an additional margin that affects input sourcing choices. For stark comparative statics,

we place the three regions on a straight line. This allows for a possible trade-off between

the diversification motive and higher trade costs of sourcing from farther regions. In some

experiments, we also vary the probabilities of shocks across regions.

We consider five experiments. In the first, “no risk” experiment, we assume ρi = 0 for all

regions. In the second, “homogeneous risk” case, we assume a constant shock probability

across space. That is, we assume ρi = 0.15 for all i. In the third, “heterogeneous risk”

scenario, we assume the shock probability varies across space, with the average shock

probability the same as the homogeneous risk case (1
I

∑3
i=1 ρi = 0.15). In the fourth,
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“heterogeneous risk in autarky” case, we raise trade costs to infinity, effectively prohibiting

interregional input sourcing. In the fifth, “heterogeneous risk with free trade” case, we

set trade costs to 0 across regions. The probabilities of shocks in cases four and five are

the same as in the baseline heterogeneous risk case 3.

Case 1: No Risk. Figure 10 illustrates the sourcing shares and expected real wages

when ρ = 0 for all regions. With identical fundamentals and positive trade costs, it is

optimal for every firm to source all inputs domestically within its own region. This is true

regardless of geography. Figure 10a illustrates the diagonal terms are 1, i.e., within-region

sourcing shares are 1 for all regions, and cross-region sourcing shares are zero. The figure

also makes clear that expected real wages are equalized across all regions under both

geographies. This setting benchmarks our model relative to typical trade and spatial

models where there is no sourcing risk. As all regions are identical, there are no gains

from trade, and the equilibrium is regional autarky. In particular, the contrast between

equidistant regions and regions on a line does not change either sourcing shares or regional

real wages. There is no role for geography in the equilibrium with no risk and positive

trade costs.

Figure 10: Scenario with no risk

(a) Bilateral Sourcing Shares (b) Real Wages (c) Real Wages

Note. Panel A shows the 3x3 input-output matrix where the buying regions are in the vertical axis and
the supplying regions are in the horizontal axis. Each row represents the share of inputs purchased by a
buying region from each (column) supplying region. In the scenario with no risk, the sourcing shares in
Panel A are the sourcing shares for the geographies in Panels B and C. Panels B and C present the real
wages for each region, as well as a visual representation of the geographical location of regions in space.
In Panel B, regions are equidistant from each other. In Panel C, regions are in a straight line, implying
that the regions have different distances from each other.

Case 2: Homogeneous Risk. Figure 11 illustrates the bilateral sourcing shares when

the risk of shocks in each region is ρ = 0.15. Firms now face a trade-off: as shocks

are independent across regions, they can reduce the probability of input disruptions by

sourcing from multiple regions. On the other hand, sourcing from other regions is costly,

due to the trade costs. As a result, firms still largely source inputs from their own

regions, but also diversify by sourcing some inputs from geographically closer regions

where trade costs are lower. Panel B illustrates that this higher demand for inputs
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from more central regions in equilibrium results in higher expected real wages in these

regions. These more central regions also diversify their risk the most by participating

in interregional sourcing. Note that the expected price index in more central regions is

therefore lower in equilibrium, as firms from these regions pay less in trade costs for inputs

and better diversify risk. In contrast, Panel A shows that while firms diversify risk with

some interregional sourcing, there is no geographic variation in expected real wages or in

sourcing patterns with equidistant regions.

Figure 11: Scenario with homogeneous risk

Panel A: Same distance between regions

(a) Bilateral Sourcing Shares (b) Real Wages

Panel B: Different distance between regions

(c) Bilateral Sourcing Shares (d) Real Wages

Note. The figures in the left panel consist of a 3x3 input-output matrix where the buying regions are in
the vertical axis and the supplying regions are in the horizontal axis. Each line represents the share of
inputs purchased by a buying region from each supplying region (column). The figures in the right panels
present the real wages for each region, as well as a visual representation of the geographical location of
regions in space. In Panel A, regions are equidistant from each other. In Panel B, regions are in a straight
line, such that the regions have different distances between each other. The scales are shown to the right
of each figure.

Case 3: Heterogeneous Risk. The left panels of Figure 14a illustrate the regional

maps and the shock probabilities of each region in the heterogeneous risk case under both

equidistant regions and heterogeneous distance. The middle panels show the bilateral
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sourcing shares between regions. The diagonal is again the darkest, in the presence of trade

costs all regions source most of their inputs from their own region despite heterogeneous

risk. However, there is clear variation. Region 1, the riskiest region, has the smallest

“own sourcing” share in both geographies while the safest region 3 sees the most “own

sourcing.” All regions source inputs from other regions, with relatively larger shares from

those with low risk. Geography plays an important role too. In the top panel, with

equidistant regions, the riskiest region 1 has a high sourcing share from the safest region

3. With regions on a line in the bottom panel, however, region 1 is now farther from the

safe region, and so its sourcing share from region 3 decreases.

The right panels show that expected real wages across regions are negatively correlated

with the risk of shocks, and are highest in safest locations despite identical regional

fundamentals. The underlying mechanisms at work are that safer regions experience

higher labor demand for their intermediate inputs from all regions, pushing up nominal

wages. They also face a lower price index of their final goods, as they can source safer

“domestic” inputs without paying trade costs. Notice that in general equilibrium, the

wage impacts on safer regions will modulate sourcing from them. As a result, even with

equidistant regions, the safe region does not see the highest sourcing shares from all other

regions.

Importantly, under our assumption that inputs are perfect substitutes and that regions

have identical fundamentals, there is no source of traditional gains from trade either

through comparative advantage or increasing varieties. The incentives for trade here

arise entirely to mitigate risk, with strong spatial general equilibrium implications for

wages and prices. We will return to this point below, when evaluating the welfare gains

from supplier diversification.

Comparison between homogeneous and heterogeneous risk cases. Figure 13c

compares the expected real wages and their variance between the homogeneous and het-

erogeneous risk cases. The left panels show the ratio of expected real wages, and the

right panels show the ratio of their variance. As is immediately clear, the riskiest region

1 has the largest declines in its expected real wages as we move from homogeneous to

heterogeneous risk under both geographies, while the safest region 3 has lower expected

real wages under homogeneous risk. Region 2, which has the same risk under both ho-

mogeneous and heterogeneous risk, sees relatively higher expected real wages when risk

is heterogeneous and it is a central region (bottom panel). In this instance, while it is

not the safest region, it is still attractive as a sourcing destination due to its central lo-

cation. When it is equidistant from all regions (top panel), its expected real wages are

similar between trade and autarky. The right panels of the figure show that all regions
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Figure 12: Scenario with heterogeneous risk

Same distance between regions

(a) Shock Probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Different distance between regions

(d) Shock Probabilities (e) Bilateral Sourcing Shares (f) Real Wages

Note. The figures in the left panel show the probability that each region is hit by a shock, as well as
a visual representation of the geographical location of regions in space. The figures in the middle panel
consist of a 3x3 input-output matrix where the buying regions are in the vertical axis and the supplying
regions are in the horizontal axis. Each line represents the share of inputs purchased by a buying regions
from each supplying region. The right panels present the real wages for each region. For the top panels,
regions are equidistant from each other. In the bottom panels, regions are in a straight line, such that
the regions have different distances between each other. The scales are shown to the right of each figure.

see a decline in the variance of their expected real wages in the heterogeneous risk case

relative to homogeneous risk. The safest region 3 sees some of the largest declines, as

its shock probability decreases moving to heterogeneous risk. However, the decline in

expected wage variance for region 3 is larger when it is equidistant from all regions and

can diversify its risk at lower cost, than when it is farther away (bottom panel). The

riskiest region 1 also sees a larger decline in its wage variance when it is equidistant from

all regions and can diversify its higher risk at lower cost, than when it is farther away

from the safest region 3 (bottom panel). On the other hand, region 2 sees a larger decline

in wage variance when regional distance is heterogeneous, as it benefits from its central

location and better ability to diversify risk at lower cost.

Case 4: Heterogeneous Risk and Autarky. We next maintain the heterogeneous

risk across regions but raise trade costs to infinity, shutting down interregional input

sourcing. Figure 14 illustrates that while the probabilities of shocks remain the same as

Case 3 above (left panel), bilateral sourcing mimics the no-risk Case 1 (middle panel).

However, the impact on expected real wages is very different in both Case 1 and Case
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Figure 13: Comparison between homogeneous and heterogeneous risk cases

Same distance between regions

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Different distance between regions

(c) Expected Real Wages Ratio (d) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right panel)
for the homogeneous case shown in Figure 11 relative to the heterogeneous case shown in Figure 12. The
variance of real wages is computed across potential states of the world. For the top panels, regions are
equidistant from each other. In the bottom panels, regions are in a straight line, such that the regions
have different distances between each other. The scales are shown to the right of each figure.

3 (right panel). The riskiest region sees the lowest expected real wages, while the safest

regions see the highest expected real wages, as they have the lowest expected prices due

to the lowest shock probabilities and fully domestic sourcing. The range of expected real

wages is larger in this case than with costly trade, illustrating the diversification benefit

of trade in mitigating expected real wage inequality across regions in an environment

with risk. In Appendix B, we show that the expected real wage patterns are similar

for equidistant regions, as with autarky, regional geography has no impact on regional

outcomes.

Welfare comparison between costly trade and autarky with heterogeneous risk

cases. We next consider how expected real wages change across regions moving from

costly trade to autarky in Panel A, Figure 15. Interestingly, all regions see a decline in
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Figure 14: Scenario with heterogeneous risk and infinite trade costs

Different distance between regions

(a) Shock probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. This figure presents the case where trade costs are set to infinity. The figures in the left panel show
the probability that each region is hit by a shock, as well as a visual representation of the geographical
location of regions in space. The figures in the middle panel consist of a 3x3 input-output matrix where
the buying regions are in the vertical axis and the supplying regions are in the horizontal axis. Each line
represents the share of inputs purchased by a buying regions from each supplying region. The right panel
presents the expected real wages for each region. The scales are shown to the right of each figure. In this
scenario, regions vary in their distance and are located on a line. The case with equidistant regions is
shown in Figure A2.

expected real wages moving to trade from autarky. The intuition is that in this setting,

there are no “conventional” gains from trade, as there is no comparative advantage or

gains from variety. The primary reason for trade here is for risk diversification. However,

trade is costly, so the benefits of diversification are obtained at a higher average input

price, raising regional price indices and lowering expected real wages under costly trade.

The smallest decline in real wages is for the riskiest region 1, which is due to its expected

real wages being relatively low in autarky as well as its high shock probability.

While the diversification motive for trade does not improve welfare as measured by the

expected real wage, Panel B of the figure illustrates that the variance in real wages

increases sharply, moving to costly trade from autarky for all regions. Supply chain

diversification lowers the variance in final goods prices across all regions, insuring against

shocks and real wage volatility. Again, the riskiest region 1 sees the largest increase in

the variance of expected real wages when trade is barred. Appendix Figure A3 shows the

same insight holds with equidistant regions, as regional geography primarily modulates

sourcing patterns when trade is possible, but does not otherwise play a large role in the

mechanisms underlying the relative decline in real wages and increase in their variance

moving from costly trade to autarky.

Case 5: Heterogeneous Risk and Free Trade. Under free trade, firms can diversify

their input risk at lower costs – the trade-off is only that inputs in lower-risk regions

will be more costly in equilibrium as those regions will see higher expected real wages.

With the same fundamentals across regions and free trade, in equilibrium, every firm
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Figure 15: Comparison between heterogeneous risk under costly trade and autarky

Different distance between regions

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right panel)
for the scenario with heterogeneous risk and costly trade shown in Figure 12 relative to the scenario with
heterogeneous risk and trade autarky shown in Figure 14. The variance of real wages is computed across
potential states of the world. Here, regions are in a straight line, such that the regions have different
distances between each other. The scales are shown to the right of each figure. The case with equidistant
regions is shown in Figure A3.

in every region has the same optimal sourcing strategy. The middle panel of Figure 16

illustrates these sourcing shares. The left panel illustrates that in this setting, there is

increased expected real wage dispersion relative to costly trade, as sourcing concentrates

in the safest location region 3, pushing up real wages there. Under free trade, regional

geography plays no role in these patterns, and sourcing shares and expected real wages

are the same as in this case when regions are equidistant (Figure A4).

Figure 16: Scenario with heterogeneous risk and free trade

Different distance between regions

(a) Shock Probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. This figure presents the case where there are no trade costs. The figure in the left panel shows
the probability that each region is hit by a shock, as well as a visual representation of the geographical
location of regions in space. The figure in the middle panel consists of a 3x3 input-output matrix where
the buying regions are in the vertical axis and the supplying regions are in the horizontal axis. Each
line represents the share of inputs purchased by a buying regions from each supplying region. The right
panes present the real wages for each region. The scales are shown to the right of each figure. Figure A4
illustrates the case when regions are equidistant from each other.
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Welfare comparison between costly and free trade with heterogeneous risk.

Panel A of Figure 17 illustrates that in contrast to costly trade, all regions see higher

expected real wages under free trade. This is due to the lower costs of inputs, both from

risk diversification and the lack of trade costs. The largest increases in expected real wages

moving from costly to free trade are in the safer but geographically-distant region 3. This

region sees increases in sourcing from all regions as firms no longer face high trade costs to

access the region’s lower risk inputs, but also sees larger declines in its own price index as

its firms do not pay large trade costs to diversify their own risk. Panel B illustrates that

moving from costly to free trade also lowers the variance of expected real wages across all

regions. Thus, under free trade, there is no trade-off between higher expected real wages

and lower volatility. Similar insights hold when regions are equidistant (Figure A5).

Figure 17: Comparison between costly and free trade

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right panel)
for the scenario with heterogeneous risk and costly trade shown in Figure 12 relative to the scenario with
heterogeneous risk and free trade shown in Figure 16. The variance of real wages is computed across
potential states of the world. Here, regions are in a straight line, such that the regions have different
distances between each other. The case with equidistant regions is in Figure A5. The scales are shown
to the right of each figure.

4 Quantification

4.1 Solution Approach

The solution to the quantitative model introduced in Section 3 requires overcoming three

computational challenges. First, the perfect substitutability across intermediate inputs

from different origins, combined with the existence of trade costs, implies that the solution

to the firms’ sourcing problem may not necessarily be interior; that is, firms in some regions

might find it optimal not to source intermediates from certain origins. Second, finding the

solution to the firms’ optimal sourcing problem involves computing a high-dimensional
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expectation over 2I states of the world.7 Third, the two challenges mentioned above are

compounded by the need to find the equilibrium of the model, which essentially surmounts

to finding the vector of wages for which all markets clear.

Given a vector of wages, {wi}Ii=1, and shock probabilities, {ρi}Ii=1, we leverage the struc-

ture of the model to solve it efficiently. The first property of the problem described in

Equation 10 is that the objective function is concave, and that the constraints are linear.

Thus, any locally optimal point is also globally optimal, i.e., the Karush-Kuhn-Tucker

(KKT) conditions are both necessary and sufficient for global optimality. These allow us

to solve the firm’s problem by combining the stationarity and complementary slackness

conditions to find that at the optimum, the following condition:

E

χiΘj

[
I∑

i=1

χiMij

] −1
β+σ(1−β)

Mij =
wiτij
zi

Mij ∀ i ∈ I,

which results from multiplying the first order condition in Equation 11 by Mji. Then,

we substitute for the general equilibrium object, Θj, to derive the following simplified

expression:

(1− β)wjLjMijE

χi

(
I∑

i=1

χiMij

)−1
 =

wiτij
zi

Mij ∀ i ∈ I.

This system of I equations in I unknowns defines a nonlinear complementarity problem

for which efficient numerical optimization routines exist.8 Finally, we approximate the

high-dimensional expectation by using simulations, effectively solving the following system

of equations for each region:9

(1− β)wjLjMij
1

S

S∑
s=1

χ(s)
i

(
I∑

i=1

χ
(s)
i Mij

)−1
 =

wiτij
zi

Mij ∀ i ∈ I.

The procedure described above yields a solution to the firms’ sourcing problem given

a vector of wages, {wi}Ii=1. To find the equilibrium wages, we manipulate the trade

balance and the optimal total intermediates expenditure conditions to derive the following

7There are more than 600 districts in India, but we group small contiguous districts to create 271 super-
districts. We implement our model for the 271 super-districts, so that involves computing expectations
over 2271 ≈ 1082 states of the world.

8We solve this problem using the optimizer PATH implemented on Julia through the optimization
modeling language JuMP (see, respectively, Ferris and Munson 1999, Bezanson et al. 2017 and Lubin
et al. 2023).

9In our estimation procedure and in the computation of counterfactuals, we use 10.000 simulations.
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equilibrium system,

wjLj =
∑
i

wiLisji({wi}Ii=1) ; sji({wi}Ii=1) =

wjτji
zj

Mji({wi}Ii=1)∑
ℓ
wℓτℓi
zj

Mℓi({wi}Ii=1)
∀ j ∈ I,

where crucially, the matrix of sourcing shares defined by
{
sji({wi}Ii=1)

}I

i=1,j=1
is a func-

tion of the vector of wages and the parameters of the model. The solution to the system

of equilibrium conditions above finds the equilibrium wages conditional on a vector of

probabilities, {ρi}Ii=1. We describe how we calibrate these probabilities in the next sub-

section.

4.2 Calibration

We group the 600 districts in India into 271 super-districts by grouping contiguous low-

population districts.10 We calibrate our model to these 271 districts. To calibrate the

model for India as a whole, we complement our transaction data with the Annual Survey

of Industries (ASI), which is a nationally representative survey of manufacturing plants

in India with more than ten employees. We primarily use the wave of 2006-07 since it is

the latest year for which the ASI has publicly available data at the district level.

We need to calibrate the following parameters and moments: the demand elasticity (σ),

the input disruption due to the shock (χj), labor endowments by district (Li), regional

productivities (ϕi), the labor share in the production function (β), iceberg trade costs

(τij), and flood probabilities (ρi).

First, we set the demand elasticity σ = 2 following Boehm et al. (2023) and choose the

input disruption parameter χj to match the drop of 0.77 log points in buyer purchases as

supplier exposure goes from 0 to 1, as estimated in our event study (Figure 5). Second, we

use the ASI to obtain employment by district, which is our labor endowments Li.

To estimate productivities by district, ϕi, and the labor share β, we follow the literature

on production function estimation and use the Ackerberg, Caves, and Frazer (2015) ap-

proach (henceforth ACF). This approach requires lagged values of labor and materials

as instruments, and we need a panel of firms. However, the public version of the ASI is

a cross-section of plants which prevents constructing a firm-level panel. As a solution,

we use the waves for 2004-05, 2005-06, and 2006-07 to construct a synthetic panel at

the industry-district level. We then treat each industry-district pair as a “firm” for the

purposes of estimation.

10We aggregate districts with fewer than 10000 manufacturing workers to a single district within a state,
or merge them to neighboring larger districts in their own state. We present results with all districts in
Appendix C.
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We implement the ACF procedure to estimate the production function parameters and

the productivities. We use revenues as the dependent variable and labor, materials,

and capital as the production function inputs. The estimation process yields coherent

estimates for the inputs that add up to less than one as expected. Once we back out

the ACF productivity for each industry-district pair, we aggregate at the district level

by using weights based on the relative importance of each industry in each district. In

the few cases where productivity cannot be estimated due to missing data for smaller

districts, we assign those regions the average productivity of their closest neighbors. Panel

A of Figure 18 illustrates the estimated variation in district-level productivities. From

the ACF procedure we also get the corresponding coefficients for labor, materials, and

capital. The results are shown in the left panel of Table 3, where the materials share is

0.81, the labor share 0.08, and the capital share 0.17. We compute the labor share as

β = 1−0.81 = 0.19. Since we do not have capital in the model, we think of the labor share

as the share of capital-augmented labor, so we include both capital and wage expenses

into the calculations.

Figure 18: Estimated productivities and risk probabilities
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(b) Model-Implied Risk Profile

Note. In this figure we plot the estimated district-level productivities (left panel) and the model-implied
district-level shock probabilities (right panel). Productivities are estimated using the ACF procedure as
described in the text. Shock probabilities are obtained by matching model-implied sourcing shares to the
data as described in the text. The scales are shown to the right of each figure.

The iceberg trade costs τij are estimated using our transaction data. Our data is only

available if one node of the transaction lies in one particular state, but we need to back

out trade costs for each bilateral pair of districts throughout India. To address this, we

proceed in two steps. First, we use our transaction data, focus on firms in our state that

sell their goods, and aggregate the data at the seller-buyer-time level. We then estimate
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Equation 23.

log(ps,b,t,q) = γ1 log(distance from s to b)s,b + γ21(b in same state as s)s,b + γs,q,t + ϵs,b,t,q,

(23)

where ps,b,t,q is the price charged by seller s to buyer b for product q at time t. For each

buyer-supplier pair we compute the log distance between them as reported in our trans-

action data. We also include a dummy variable on whether the buyer (b) is in our state.

The coefficient on distance captures how prices charged change as distance increases. Im-

portantly, we add seller-product-time fixed effects, so effectively, the coefficients γ1 and

γ2 are being identified by sellers that sell the same product to multiple buyers in a given

time period. Since we are doing this within seller-product-time, the estimates are not

driven by firm-level shocks such as productivity that might also affect prices. The results

of this regression can be found in the right panel of Table 3.

Table 3: Estimation results

Panel A: Production Function Estimation Panel B: Trade Costs Estimation

log(Sales) log(Prices,b,t,q)

log(Materials) 0.81*** log(distance from s to b) 0.0174***
(0.076) (0.0001)

log(Workers) 0.17*** 1(b in same state as s) -0.086***
(0.061) (0.0001)

log(Fixed Capital) 0.08
(0.063)

Number of Observations 9128 Number of Observations 65,477,898

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1 Panel A presents the results of the production function
estimation using the ACF procedure. The reported coefficients are for log materials, log number of
workers, and log fixed capital as calculated from the ASI. Panel B presents the results for the trade costs
estimation using our transaction data. The outcome is the log price charged by a seller in our state (s),
for a given product (q), to a buyer (b) in a given month-year period (t). The main regressors are log
distance from buyer to seller and a dummy that takes the value of 1 if the buyer is in the same state as
the seller. We control for seller-product-time fixed effects.

Second, we use the estimated coefficient to predict trade costs for the rest of India. We

compute bilateral distances between the centroid of each district and use those distances to

predict trade costs between regions using the estimated coefficients γ̂1 and γ̂2. We assume

that the border effect estimated through coefficient γ̂2 is the same for all states.

Shock probabilities. Our model implies that bilateral sourcing shares are pinned down

by district fundamentals like productivities and labor force, and bilateral trade costs, in

addition to the vector of district-level shock probabilities. Therefore, we can obtain the

vector of shock probabilities ρi by minimizing the distance between the observed sourcing

shares in the data with those implied by the model. The intuition of the exercise is as
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follows: conditional on the rest of the parameters and moments of the model, we pick the

shock probabilities of each district to match exactly the observed share of purchases from

every district in our state to each other district in India. The underlying assumption is

that anything that is not captured by the district-level productivities and trade costs is

part of the risk of the district. Of course, in practice, such residuals do not only include

flooding risk, but also many other risk components. However, in Figure 19, we show

that our estimated probabilities are significantly correlated with observables related to

historical flood risk as well as projected future flood risk, such as average rainfall, coastal

flooding, and riverine flooding. It is worth noting that, in the case of riverine flooding,

the projected flooding in 2050 is more correlated with the probabilities than the historical

values. This is consistent with agents in our model considering not only realized but also

potential shocks when making production decisions.

In Table 4, we run pairwise regressions of the model probabilities on the climate vari-

ables as well as other variables that could also be related to risk. Interestingly, besides

the climate variables, most other variables are not significantly correlated with the risk

probabilities. We also consider average temperature, court congestion, terrain elevation

and ruggedness, and nightlights luminosity as alternative measures. In Appendix Table

A2, we present the full regression of probabilities on all observables. Finally, in Figure

A7, we show that these probabilities are not correlated with either productivities, nor the

average distance to the state of our study.

Table 4: Pairwise regressions between model probabilities and observables

Log daily rainfall
(historical)

Log daily rainfall
(projected 2050)

Log coastal flooding
(historical)

Log coastal flooding
(projected)

Log riverine flooding
(historical)

Log riverine flooding
(projected 2050)

Coefficient 0.0405*** 0.0145* 0.316* 0.237** 0.0778 0.166***
(0.0135) (0.00840) (0.161) (0.120) (0.0654) (0.0474)

N obs 271 271 271 271 271 271
R2 0.032 0.011 0.014 0.014 0.005 0.044

Log avg temperature
(historical)

Log avg temperature
(projected 2050)

Log avg nightlights
luminosity

Log avg elevation Log avg ruggedness
Log avg court
congestion

Coefficient -0.0382 -0.0566 0.00310 -0.0138*** -0.00386 -0.0141
(0.0432) (0.0409) (0.00958) (0.00525) (0.0110) (0.0507)

N obs 271 271 271 271 271 271
R2 0.003 0.007 0.000 0.025 0.000 0.000

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1 We run pairwise regressions of the model probabilities on
observables. Each of the columns in the table shows the regression coefficient of the different variables.
Probabilities and observables are logged. A more detailed definition of each of the variables can be found
in Appendix C.2.

Notice that this exercise requires solving jointly for the vector of district-level risk that

minimizes the gap between model-implied sourcing shares and data, as all bilateral sourc-

ing shares are equilibrium objects that depend on the fundamentals and risk of all other

districts. Further, we cannot exactly match all bilateral sourcing shares in the data, as

we choose a single shock probability for each district, but we observe multiple sourcing
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Figure 19: Model probabilities and observables

(a) Daily Rainfall - Historical (b) Daily Rainfall - Projected 2050

.

(c) Coastal Flooding - Historical (d) Coastal Flooding - Projected 2050

(e) Riverine Flooding - Historical (f) Riverine Flooding - Projected 2050

Note. In this figure, we plot the estimated probabilities against climate observables. In Figure 19a, we
correlate the probabilities with the average daily rainfall in 2019 (historical). In Figure 19b, we use the
rainfall projections for year 2050. Figures 19c and 19d use the historical and projected coastal flooding,
while Figures 19e and 19f correlate the probabilities with historical and projected riverine flooding,
respectively. A more detailed definition of each of the variables can be found in Appendix C.2.

shares for that district from all districts in our “state.” We therefore set up a Miminum

Distance Estimator, which aims to match the average sourcing shares for each origin dis-
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trict observed across all destination districts in our data. In practice, we also are able to

match all the bilateral sourcing shares in the data well, as Figure 20 shows. As external

validation, the right panel of Figure 20 shows that our model also matches the data on

sales shares well, which are untargeted moments.11

Table 5 summarizes our model calibration.

Table 5: Calibrated moments

Parameter Source

Li: Labor endowments Annual Survey of Industries (ASI), 2019-20

ϕi: Region productivities Ackerberg et al. (2015) estimation (ASI, 2017-2019)

τij: Iceberg trade costs
Regression of within firm-product price on distance
between buyer and seller (Transaction data)

ρi: Flood probabilities
Model inversion using sourcing shares across
districts (Transaction data)

χi: Flood shock
Match drop in buyer purchases
from event study (Transaction data)

β: Labor share
0.17: Expenditure in labor and capital to
total sales (ASI, 2017-2019)

σ: Demand elasticity 2: Based on (Boehm et al., 2023)

4.3 Quantitative Results

We begin by showing that the model delivers a strong negative relationship between shock

probabilities and relative nominal wages (and real wages) in the cross-section. Figure 21

shows that both nominal and real wages are negatively correlated with shock probabilities,

as we would expect. In Figure A8, we also show that the price index and the variance in

real wages are negatively correlated with the shock probabilities.

Probabilities and sourcing shares. To illustrate the rich heterogeneity in bilateral

sourcing patterns in the quantitative model, we show the sourcing choices of two districts

in Figure 22. The left panel illustrates the sourcing patterns of New Delhi, a relatively

low risk district. The right panel shows the sourcing shares chosen by Kolkata, a high-risk

11While our estimated probabilities might seem high, as discussed above, they capture sev-
eral sources of risk. Further, available evidence from Indian businesses suggests that sup-
ply chain disruptions are a key concern. For instance, PwC’s 26th Annual Global CEO
Survey in late 2022 found that 50% of India CEOs were concerned about supply chain dis-
ruptions (https://www.pwc.in/assets/pdfs/research-insights-hub/immersive-outlook-3/
paradigm-shift-in-supply-chain-management.pdf).
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Figure 20: Sourcing shares: Model vs. Data

(a) Input Shares (b) Output Shares

Note. In this figure, we plot the sourcing shares in the data against the model. The red line is a 45-degree
line. In the left panel we plot the input sourcing shares. We target average sourcing probabilities from
our state’s districts to the rest of the districts, but we do not force anything to match the particular
sourcing shares of each district. The left panel plots each individual district’s input shares. The right
panel shows sales shares, which are entirely untargeted.

Figure 21: Shock probabilities and wages

(a) Nominal Wages (b) Real Wages

Note. In this figure, we plot model-derived nominal (left panel) and real wages (right panel) against the
estimated shock probabilities. Figure A8 further plots the price index and the variance in real wages
against the shock probabilities.

district. In both districts, firms diversify, but sourcing strategies depend on geography

– they source more from geographically closer areas. Diversification also depends on the

risk profile of the origin district – for Kolkata, the model implies the district’s firms choose

more interdistrict sourcing to mitigate risk. In fact, while New Delhi’s highest sourcing

share is own-district sourcing (nearly 25%), Kolkata’s largest sourcing shares are not own-

district sourcing. In fact, own-district sourcing in Kolkata is only around 7.25%. Notice

that the sourcing patterns for both districts imply several zeros (our solution algorithm

permits zero sourcing shares in equilibrium, as discussed in Section 4.1). In Appendix C,

we show that under free trade, the sourcing patterns for all regions are identical, and each
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region sources from districts all over the country.

Figure 22: Delhi sourcing, Kolkata sourcing

(2.703,24.884]
(1.338,2.703]
(0.857,1.338]
(0.588,0.857]
[0.223,0.588]
Sourcing < 0.01%

(3.146,11.241]
(0.861,3.146]
(0.447,0.861]
(0.233,0.447]
[0.032,0.233]
Sourcing < 0.01%

Expected real wages under baseline and autarky. The comparative statics in

Section 3 showed that with identical regional fundamentals, expected real wages were

lower for all regions with costly trade than in autarky. To assess whether this mechanism

is quantitatively relevant in the calibrated model with varying regional fundamentals and

estimated trade costs, we compute the difference in expected real wages in the baseline

model with the model-implied expected real wages given the same regional fundamentals

and infinite trade costs.

Figure 23 illustrates the spatial variation of expected real wages in the baseline model

and in the autarky counterfactual. On average, expected real wages are 5.0% higher in

the baseline model than in autarky. However, 10.7% of districts have lower expected real

wages. The variance of real wages is 77.6% lower in the baseline model than in autarky,

validating the quantitative relevance of the main comparative statics exercises.

The quantification also makes clear where the deviation from the stark comparative statics

result with identical fundamentals arises. The regions that see welfare gains in autarky

relative to costly trade are those that have relatively lower risk and high productivity,

leading to high equilibrium expected real wages in under both trade and autarky. These

regions do not benefit much from diversification of their own risk, as they are lower

risk. With costly trade, there are two opposing effects, Diversification by riskier districts

pushes up the nominal wages in these districts, as their fundamentals make them attractive

sourcing locations. On the other hand, the prices of their final goods also go up as their

“own” input costs increase through the wage effects. They also diversify and source

relatively higher cost traded inputs. For these regions, the increase in final goods prices

more than offsets the nominal wage increase, and they see a decline in expected real wages
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under costly trade.

Expected real wages under baseline and free trade. In contrast, Figure 23 shows

that expected real wages are higher for many regions under a free trade counterfactual.

To implement free trade in our quantitative exercise, we set the iceberg trade costs to 1

between all districts. Under free trade, expected real wages are on average 8.0% higher

than in the baseline, whereas the variance of real wages is 64.4% lower.

Figure 23: Quantitative results

Panel A: Expected real wages

(a) Baseline (b) % ∆ in Autarky (c) % ∆ in Free Trade

Panel B: Variance of real wages

(d) Baseline (e) % ∆ in Autarky (f) % ∆ in Free Trade

Note. This figure shows expected real wages (Panel A) and their variance (Panel B). The left column shows
expected real wages and their variance in the baseline calibrated model. In the middle and right columns,
the figure shows the percentage changes in expected real wages under the autarky and the free trade
counterfactuals relative to the baseline scenario. In the bottom panel, the middle and right figures show
the percentage changes in the variance of real wages under the autarky and the free trade counterfactuals
relative to the baseline scenario.

Inventories. In Appendix B.3 we develop an extension of our model to a setting with

intermediate input inventories. While we lack detailed inventory data to quantify this

extension, we show that the model can qualitatively generate a pattern similar to that in
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Figure 5, with a larger decline in inputs than in sales following a shock. The extension

makes clear the ability to hold inventories does not change a firm’s diversification motives

ex-ante, as the firm’s expected profit function remains convex in input orders. However,

existing inventories do shift the level of inputs available within a period for production,

which mitigates the short-run effects of a shock on output should one occur.

4.4 Climate Change Counterfactuals

While the previous section explored several counterfactuals, such as autarky or free trade,

we next study the implications of increasing climate risk in our model. We estimate

the share of our model-implied shock probabilities that can be explained by climate-

risk-related variables such as rainfall or flooding events. Through the lens of our model,

these probabilities capture the risk firms assign to each district. However, as discussed

above, the risk associated with each region can be due to climate risk, but also other

regional characteristics such as infrastructure or governance. In this section, to highlight

the implications of changing climate risk, we hold all other sources of risk constant and

double the climate risk of each region relative to the baseline.

We proceed as follows: First, we regress the inverse logit transformation of our probabili-

ties on the historical measures of rainfall, coastal flooding, and riverine flooding presented

in Figure 4. Second, we use the estimated coefficients to predict the value of the probabil-

ities in 2050 using the projected values for rainfall, coastal flooding, and riverine flooding,

also presented in Figure 4. This method yields how the probabilities would change if

climate variables evolve as predicted.

Panel A of Figure 24 illustrates how these probabilities change across space in our main

counterfactual. As the figure makes clear, there is wide variation in the changes in climate

risk, with the northeast and parts of the west coast seeing large increases in risk, while

the central part of the country sees decreases in risk. On average, risk increases by 0.38

percentage points. Panel B illustrates the change in supplier input prices across the

country in this counterfactual. There is less variation in the supplier input price changes,

but the regions that see the highest climate risk increases see decreases in the input prices

their intermediate producers offer.12

Panel C illustrates changes in expected real wages. The riskiest regions see the largest

declines in expected real wages, while regions that get safer see increases. On average,

there is an 1% decline in expected real wages, and an 1.14% decline in their volatility.

62.4% of districts see expected real wage gains, however, reflecting that the majority of

districts see lower climate risk in the counterfactual.

12Recall input prices pi =
wi

zi
. Effectively, the nominal wages in risky regions are decreasing, although

by less than the increase in their risk due to general equilibrium effects of sourcing diversification.
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Climate change has implications for spatial inequality. It will adversely affect regions in

the North East, which already have low wages. Climate risk will not only subject them to

increased flooding, but also a decrease in real wages as supply chains become less reliant

on this region. In Figures A9 and A10, we show results where only the probability of

floods or of precipitation increases. Table 6 summarizes the quantitative results across all

counterfactuals.

Figure 24: Counterfactuals: Climate Risk Increase

(a) A: Climate risk change (b) B:% ∆ input prices

(c) C:% ∆ Expected Real Wages (d) D: % ∆ Volatility

Note. In this figure, we plot the change in probabilities of climate risk (panel A), the change in district
input prices (panel B) the change in expected real wages (panel C) and the change in the volatility of
real wages (Panel D) as climate risk increases as described in Section 4.4.

5 Conclusion

Climate risk is an increasingly important concern worldwide, with large projected eco-

nomic impacts. Adaptation of firm supply chains to perceived climate risk is a crucial

channel through which economies might adjust to climate risk. Such adaptation has

implications for the spatial concentration of economic activity and regional income. Re-
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Table 6: Model Counterfactuals: Summary

Counterfactual Expected Real Wages Real Wage Volatility % districts
Avg. change Range Avg. change Range Real wage declines

Baseline risk
Autarky -4.46% 6.01 p.p 348.57% 187.12 p.p 89.30%
Free Trade 8.05% 3.72 p.p -64.37% 3.58 p.p 0.00%

Alternative risk
Climate change -1.00% 4.65 p.p -1.14% 3.76 p.p 37.6%
Only Rainfall Risk -0.60% 4.1 p.p -0.72% 3.28 p.p 38.3%
Only Flood Risk -0.40% 0.25 p.p -0.46% 0.28 p.p 55.7%

Note. This table shows statistics of the distribution of percentage changes between the baseline scenario
with current climate risk and costly trade and other scenarios. Range refers to the interquartile range.

gions that are low-risk but less productive might see increases in their real wages as firms

diversify their supply chains.

This paper provides empirical evidence suggesting firm supply chains are structured taking

climate risk into account. Our new model of firm supply chain decisions under risk

incorporates key patterns we see in the data: firms source the same inputs from multiple

locations and seek drier regions to source inputs even when they are farther away. The

model results suggest that, on the one hand, input sourcing decisions mitigate climate risk

as firms diversify their sources. Yet, on the other hand, they amplify the distributional

effects, as regions that face adverse climate shocks will also suffer lower real wages.

Our quantification exercise infers that the impact of climate risk on firm sourcing delivers

important implications for economic activity across space. In particular, expected real

wages are higher for regions that are less risky. Further, for some regions expected real

wages decrease under costly trade compared to autarky, as firms diversify their climate

exposure by sourcing inputs from less productive and more costly producers. However,

the volatility of real wages is unambiguously lower with the possibility of diversification

through supply chains.
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Appendix for online publication only

A Details on the Firm-to-Firm Data

We illustrate a stylized example of our establishment-level networks data in Figure A1.

As the diagram shows, we observe all transactions where one node of the transaction is

within the state. This includes all transactions between establishments within the state

(the yellow lines), any inflows from or outflows to the rest of the country (the blue lines),

and all international imports and exports (the green lines).

Figure A1: Stylized Example of Establishment-Level Network

Notes: Stylized example of establishment-level data. The upper half represents the country, and the

upper left quadrant represents the state in question. The data includes all transactions within the state,

and all transactions where one node of the transaction (either buyer or seller) is in the state.

The data report value and quantity of traded items, so we can construct unit values.

To do this, we aggregate values and quantities at the four-digit HSN/month/transaction

level, and then construct implied unit values. We can then collapse the data at the 4-digit

HSN/month level to construct average unit values, the number of transactions between

each seller and buyer pair, and total value of the goods transacted. This is the foundation

of the firm-to-firm dataset we use in the analysis. Additionally, we can aggregate these

data to the buyer level, which we use in our reduced-form section. Table A1 summarizes

our primary variables of interest using this dataset.
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Table A1: Summary Statistics for Main Variables

Outcome Mean p25 p50 p75

Separation Rate (%) 30.9 0 16.67 52.78
Entry Rate (%) 74.06 0 50 106.67
Net Separations (%) -43.12 -70 0 0
Real Input Value (log) 14.91 12.48 14.55 16.96
Real Sales (log) 16.33 13.57 16.05 18.66
Avg. Supplier Size (millions of rupees) 106.42 9.65 34.04 127.49
Avg. Supplier Outdegree 43.04 3.3 10.97 31.99
Share Purch. Lgst. Supplier (%) 52.39 31.06 47.84 71.82
Number Products 12.05 3 7 14
Share Purch. Diff. Prod. (%) 60.19 21.25 72.78 97.81
Supply Chain Depth 32.32 28.15 31.46 36.35
Number Suppliers 12.35 3 7 14
Avg. Distance (km) 486.71 97.13 251.65 712.75
Share Purch. Non-Home State (%) 38.54 0 24.42 78.48

Note. We calculate summary statistics for key outcomes to describe the network. Summary statistics
calculated in December 2019-February 2020. Number of firms included in calculations: 136,562.

B Theory Appendix

B.1 Proofs

Proposition 1: Proof. Since the cost of materials is linear in Mij and the constraints

are conventional (linear) non-negativity constraints, it suffices to show that the expected

operating profits function Eχ (π(M ;χ)) is concave in the vector M . The expectation

operator preserves the concavity of π(M ;χ) which is the only thing required to prove. The

concavity of ex-post profits, π(M ;χ), follows from the parametric restriction, (1−β)(σ−1)
β+σ(1−β)

<

1.

Lemma 1: Proof. Notice that, conditional on some state of the world, χ, ex-post

aggregate profits are given by,

∫
ω∈[0,1]

πi(ω;χ)dω =

∫
ω∈[0,1]

(
pi(ω;χ)qi(ω;χ)− wiℓi(ω;χ)−

∑
j

pIjiMji(ω)

)
dω.

Using the assumption of a unit mass of homogenous firms in a region, ex-post aggregate

profits are then

πi(χ) = pi(χ)qi(χ)− wi(χ)L̄i −
∑
j

pIjiMji.

where pi(χ)qi(χ) corresponds to aggregate revenues from the final goods sector, wi(χ)L̄i

are payments to residual labor, and
∑

j p
I
jiMji is total expenditure on intermediate inputs.

As final goods firms are monopolistically competitive and the final goods aggregator is
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CES, standard algebra shows that profits are a constant fraction of revenues:

πi(χ) =
pi(χ)qi(χ)

σ
.

The budget constraint implies equilibrium revenues are simply labor income plus profits

pi(χ)qi(χ) = Yi(χ) = wi(χ)Li + πi(χ). Combining these expressions, we can show

that

πi(χ) =
wi(χ)Li

σ − 1
; Yi(χ) =

σ

σ − 1
wi(χ)Li

This further implies that aggregate costs of firms are (σ−1)
σ

Yi and aggregate expenditure

on materials is then
∑

j p
I
ijMij =

(1−β)(σ−1)
σ

Yi.

Lemma 2: Proof. We prove that wages in each location i, wi, are deterministic

by showing that labor market clearing must occur at the time of producing interme-

diates.

By backward induction, after intermediate inputs have been produced, final goods pro-

ducers in each region face an inelastic residual labor supply equal to L̄i. Aggregate labor

demand in each region is given by,

LD
i (χ) =

 Yi(χ)

ϕi

(∑
j∈I χjMij

)1−β

pi(χ)


1
β

,

where final goods’ prices can be written as

pi(χ) =

[
β(σ − 1)

σ

]−β

ϕ−1
i

(∑
j∈I

χjMij

)−(1−β)

wi(χ)
βYi(χ)

1−β.

If we plug the expression for prices, in the aggregate labor demand equation, and simplify

we get that,

LD
i (χ) = βLi

Crucially, aggregate labor demand by final goods producers does not depend on the re-

alization of the shocks, χ. However to clear the labor market in each location the wage

rate needs to be such that the residual labor supply that final goods’ producers face, L̄i,

is equal to their inelastic labor demand. The wage rate is set ex-ante when intermediate

good production takes place and is independent of the realization of the shocks. As a

corollary, this implies that the wage rate, wi(χ), aggregate profits πi(χ) and aggregate

income Yi(χ) are all deterministic.
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B.2 Additional Results: Comparative Statics

Figure A2: Scenario with heterogeneous risk and infinite trade costs

Same distance between regions

(a) Shock probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. This figure presents the case where trade costs are set to infinity and regions are equidistant.
The figures in the left panel show the probability that each region is hit by a shock, as well as a visual
representation of the geographical location of regions in space. The figures in the middle panel consist
of a 3x3 input-output matrix where the buying regions are in the vertical axis and the supplying regions
are in the horizontal axis. Each line represents the share of inputs purchased by a buying regions from
each supplying region. The right panel present the real wages for each region. The scales are shown to
the right of each figure. The case with heterogeneous distance between regions is shown in Figure 14.

Figure A3: Comparison between heterogeneous risk under costly trade and autarky

Different distance between regions

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right panel)
for the scenario with heterogeneous risk and costly trade shown in Figure 12 relative to the scenario with
heterogeneous risk and trade autarky shown in Figure 14. The variance of real wages is computed across
potential states of the world. In this scenario, regions are equidistant from each other. The scales are
shown to the right of each figure. The case with regions in a line is discussed in Figure 15.
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Figure A4: Scenario with heterogeneous risk and free trade

Same distance between regions

(a) Shock probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. This figure presents the case where there are no trade costs. The figure in the left panel show
the probability that each region is hit by a shock, as well as a visual representation of the geographical
location of regions in space. The figure in the middle panel consist of a 3x3 input-output matrix where
the buying regions are in the vertical axis and the supplying regions are in the horizontal axis. Each
line represents the share of inputs purchased by a buying regions from each supplying region. The right
panels present the real wages for each region. Here, regions are equidistant from each other. The case
with heterogeneous distance is in Figure 16. The scales are shown to the right of each figure.

Figure A5: Comparison between costly and free trade

Different distance between regions

Equidistant regions

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right panel)
for the scenario with heterogeneous risk and costly trade shown in Figure 12 relative to the scenario with
heterogeneous risk and free trade shown in Figure 16. The variance of real wages is computed across
potential states of the world. Here, regions are equidistant from each other. The case with regions on a
line is shown in Figure 17. The scales are shown to the right of each figure.
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B.3 Inventories

We next extend our model to allow firms to hold inventories of their material inputs.

We assume inventories accumulated at t can be costlessly stored for one period and used

in t + 1, after which they fully depreciate. The assumption of full depreciation after one

period (a quarter) is made for analytical convenience, to curtail the dimension of the state

space. However, this setting is sufficient to capture the main motive for firm inventory

holdings, as insurance against the i.i.d shocks in this model, and to illustrate that we

can qualitatively replicate the pattern in the event studies where shocked buyer output

declined less than inputs. Notice that the costs of holding inventories in a country like

India are likely higher than the U.S. . However, we lack detailed data on plant or firm

inventory holdings to discipline the costs of storage, and so assume costless storage from

one quarter to the next (over a total period of 6 months) and full depreciation after.

Timing. At the production stage, firms additionally choose the share of intermediate

inputs at they want to use to produce in the period. A share 1 − at will then stock

inventories, that will carry to the next period.

Firm problem, stage 2. In period t, and after disruptions have taken place, a firm

with inventories et−1 solves the following problem:

Vpost

(
et−1,

∑
j∈I

χjtMijt

)
≡ max

at
C

(at∑
j∈I

χjtMjit + et−1

)(1−β)(σ−1)
 1

β+σ(1−β)

+ δVante (et)

(24)

such that

et = (1− at)
∑
j∈I

χjtMijt (25)

at ∈ [0, 1] (26)

Vante (et−1) ≡ max
Mijt≥0

E

[
Vpost

(
et−1,

∑
j∈I

χjtMijt

)
−
∑
j

pjMjit

]
(27)

Here, Vpost (.) is the forward looking firm’s value function after shocks have materialized in

period t and C is a constant. At this point, the firm holds inventories of et−1 stored from

the previous period, which is an additional state variable. Equation (24) is the dynamic

analog of the firm’s ex-ante profit maximization condition in Equation (6). Firms now
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have the choice of storing inputs as inventories for period t+ 1, with the constraint that

the share of inputs stored as inventories cannot exceed 1. There are no additional storage

costs, so the choice of at pins down et which are available to produce in t + 1 (Equation

(25). At the beginning of a period, the firms’ value function is Vante, which is the dynamic

analog of Equation (10) given the state variable, the existing inventories, et−1.

The Euler equation for at is:

[
at
∑
j∈I

χjtMijt + et−1

] (1−β)(σ−1)
β+σ(1−β)

−1

= δE

[at+1

∑
j∈I

χjt+1Mijt+1 + et

] (1−β)(σ−1)
β+σ(1−β)

−1
 . (28)

In other words, a firm in stage 2 chooses inventories for stage 1 of the next period in such

a way that it equates the marginal return of materials today with the expected marginal

return of those materials tomorrow.

Calibration. We simulate this model in partial equilibrium. Under the assumption of

complete discounting (δ = 0) the model collapses to our baseline model. We assume

a firm in i’s input orders from some location j face an unanticipated shock at t = 0

with a magnitude such that available inputs decline by 75% to match the event studies

in Section 2.3. Figure A6 illustrates the time path of firm input purchases and sales

following the shock, with the inventory mechanism in Panel A and the baseline model

with no inventories in Panel B.

Figure A6: Inventory Model: Sales and Inputs

(a) Inventory Model (b) Baseline Model

Note. In this figure, we show the responses of firm sales and input purchases in the model with inventories
(left panel) and in the baseline model (right panel).

As is clear from Panel A of Figure A6, adding in the inventory holding mechanism helps

firms further smooth sales when they experience a shock to inputs. In fact, the simple
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framework here matches the qualitative patterns in the event studies well – inputs decline

and then overshoot in the recovery, as firms reaccumulate inventories. Sales in contrast

experience a very small decline. Panel B illustrates the responses in our baseline model.

Here, for the same decline inputs, sales experience a larger decline relative to Panel A.

However, sales fall by less than inputs, illustrating that the diversification across sourcing

locations also provides firms an additional means by which to mitigate sales declines when

exposed to risk.

Conceptually, inventories and sourcing location diversification are two approaches by

which firms can mitigate output volatility. In practice, the trade-off between these two

approaches and their relative importance will depend on the relative costs, higher cost

inputs vs the costs of inventory storage. As we lack data to discipline inventory holding

costs, and the model with inventories is less tractable in general equilibrium, we focus

on the sourcing location diversification. Our descriptive evidence suggests that firms are

engaging in such diversification, so it is a salient mechanism in practice. Notice that in

our model, even given a level of inventories in a period, firm’s expected profits remain

concave in (residual) input orders, and so firms will continue to diversify across sourcing

locations.

C Quantitative Appendix

C.1 Dataset construction

In Section 4.2, we use multiple sources to correlate our model implied probabilities with

observables related to supply chain disruption risk. We consider four climate related

measures: rainfall, coastal flooding, riverine flooding, and average temperatures. Our

climate data is available for grid areas that are much more detailed than our 271 regions.

In such cases, we use shape files to overlay our regions to the available maps and calculate

the average measure of the climate variables within each of our regions.

Coastal and riverine flooding are taken from the World Resources Institute’s Aqueduct

Floods Hazard Map. Historical flooding is defined as the present day meters of flooded

areas. Projected flooding are the expected meters of increase in flooded areas expected

in 2050. We use 10-year floods and the RCP 4.5 as our baseline projection.

Historical and projected temperature data is taken from the IPCC WG1 Interactive Atlas.

Historical temperatures are the average daily degrees centigrade in 2005 (the latest year

available for historical data). Projected data for 2050 is calculated assuming a risk scenario

of RCP 8.5 and using a risk model of NOAA global circulation model and the Swedish

Meterological and Hydrological Institute’s local circulation model.
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Daily rainfall data is taken from the India Meteorological Department and measured in

millimeters. We take the average across all days in 2019 for each district. For predicted

rainfall, we first extract the average historical (measured in 2005) and predicted 2050

rainfall from the IPCCWG1 Interactive Atlas, using the same settings as for temperature.

We then compute the change for each district between 2005 and 2050, and apply the

implied yearly change to update the 2019 values to 2050.

The non climate variables mostly come from the Socioeconomic High-resolution Rural-

Urban Geographic Platform for India (SHRUG). Elevation is defined as the average ele-

vation in meters of each district while terrain ruggedness is the Terrain Ruggedness Index

expressing elevation differences between adjacent pixels. The nightlights luminosity index

aims to capture economic activity by detailed regions. Finally, court congestion is taken

from the Development Data Lab and measures the average delay in days for the courts

in each district.

C.2 Model probabilities -additional analysis

Figure A7: Model probabilities, Productivities and Distance

(a) Prob vs Productivities (b) Prob v Average Distance

Note. In this figure, we plot the estimated probabilities against some observables. In the left panel, we
correlate the probabilities with Log(Productivities). In the right panel, we correlate the probabilities
with the average distance to the state of our study.
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Table A2: Regression of model probabilities on observables

Historical Projected (2050) Historical Projected (2050)

Log Daily Rainfall 0.0350** 0.00388 0.0498*** 0.00364
(0.0143) (0.00884) (0.0182) (0.00942)

Log Coastal Flooding 0.226 0.184 0.112 0.112
(0.164) (0.120) (0.183) (0.137)

Log Riverine Flooding 0.0264 0.149*** -0.0167 0.134**
(0.0669) (0.0497) (0.0696) (0.0527)

Log Avg Temperature -0.0175 -0.0296 -0.0321 -0.0321
(0.0432) (0.0415) (0.0524) (0.0503)

Log Avg Nightlights Luminosity 0.00122 -0.000116
(0.0103) (0.0102)

Log Avg Elevation -0.00577 -0.00727
(0.00725) (0.00702)

Log Avg Rugedness -0.0213 0.00294
(0.0168) (0.0142)

Log Avg Court Congestion -0.0124 0.0115
(0.0626) (0.0634)

N 271 271 271 271
adj. R-sq 0.027 0.043 0.031 0.033

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run regressions of the log model probabilities on
observables. In columns 1 and 3, climate variables used are measured with their historical values. In
columns 2 and 4, climate variables used are measured with the projected values for 2050. Observables
are also logged. A more detailed definition of each of the variables can be found in Appendix C.2.

Figure A8: Shock probabilities, Price Indices and Wages

(a) Price Index (b) Real Wage Variance

Note. In this figure, we plot the model-derived price index (left panel) and real wage variance (right
panel) against the estimated shock probabilities.
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Figure A9: Counterfactuals: Flood Risk Increase

(a) Flood risk change (b) % ∆ input prices (c) % ∆ Expected Real Wages

Note. In this figure, we plot the change in probabilities of flood risk (left panel), the change in district
input prices (middle panel) and the change in expected real wages (right panel) as flood risk increases as
described in Section 4.4.

Figure A10: Counterfactuals: Precipitation Risk Increase

(a) Flood risk change (b) % ∆ input prices (c) % ∆ Expected Real Wages

Note. In this figure, we plot the change in probabilities of precipitation (left panel), the change in district
input prices (middle panel) and the change in expected real wages (right panel) as flood risk increases as
described in Section 4.4.

xi
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